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HEAT-TRANSFER AND WEIGH!T ANALYSIS OF A 

MOVING-BELT RADIATOR SYSTEM FOR 

WASTE HEPLT REJECTION I N  SPACE 

by Richard J. Flaherty 

Lewis Research Center 

SUMMARY 

A t h e o r e t i c a l  ana lys i s  has been conducted of t h e  heat- t ransfer  and weight 
cha rac t e r i s t i c s  of a moving-belt r ad ia to r  system i n  which waste heat i s  t r ans -  
f e r r ed  t o  t h e  b e l t  by contact with t h e  outer  sur face  of a ro t a t ing  o r  s t a t iona ry  
drum i n  which working-fluid vapor is condensing. A n  eigenvalue so lu t ion  for t he  
conductive heat t r a n s f e r  from t h e  condensing vapor through the  drum wall and 
drum-belt in te r face  t o  the b e l t  is  derived. A s impl i f ied  approximate r e l a t i o n  
f o r  t h e  heat t r a n s f e r  i s  a l s o  presented. 

A n  ana lys i s  of t h e  drum-belt system weight (per un i t  heat-radiat ion r a t e )  
was conducted t o  ind ica te  t h e  influence of t h e  major  design var iab les  involved. 
System weight was found t o  be highly dependent on t h e  value of the belt-drum 
contact conductance. Means must therefore  be provided t o  obtain good contact 
conductance. The d e s i r a b i l i t y  of high condensing coe f f i c i en t s  was a l so  indicatczd 
f o r  low system weight. 

A n  i l l u s t r a t i v e  example of t he  incorporation of a b e l t  r ad ia to r  i n t o  a s i m -  
.ple Rankine turbogenerator cycle at a power l e v e l  of about 5 megawatts was com- 
puted. Calculations showed tha t  a belt-radiator-system weight can be substan- 
t i a l l y  l e s s  than the  weight f o r  a corresponding f in- tube radiator .  

Because t h e  b e l t  r ad ia to r  o f f e r s  pramise of subs t an t i a l  weight savings over 
a f in- tube rad ia tor  because of i t s  reduced susceptab i l i ty  t o  meteoroid damage 
and s ince  it o f fe r s  a compact launch package, t h e  be l t - r ad ia to r  system appears 
t o  have a s igni f icant  advantage f o r  e l e c t r i c a l l y  powered space-propulsion sys- 
t ems. However, t h e  mechanical complexity and unique heat -transf e r  charact eris- 
t i c s  of t h e  b e l t  r ad ia to r  required de ta i l ed  design s tudies  and experimental work 
before i t s  t r u e  p o t e n t i a l  can be established. 

INTRODUCTION 

A number of proposed propulsion systems f o r  future space missions u t i l i z e  
e l e c t r i c a l  energy f o r  production of t h rus t .  To be of p r a c t i c a l  value, t h e  sys- 
t em,  including fuel for producing e l ec t r i c i ty ,  m u s t  have l o w  weight per un i t  



power and pe r  un i t  energy. A nuclear powerplant of fe rs  low weight per  unit 
energy and considerable p o t e n t i a l  f o r  low weight per  u n i t  power. To date, most 
nuclear power-generation systems being considered convert thermal energy from a 
reac tor  i n t o  e l e c t r i c i t y  and are Carnot l imi ted  (e.g., turbogenerators, therm- 
ion ic  converters, thermoelectr ic  converters, and regenerat ive f u e l  c e l l s ) .  
Therefore, t h e  ove ra l l  system must r e j e c t  l a rge  amounts of waste heat i n t o  space. 

In general, the only p r a c t i c a l  means of heat  r e j e c t i o n  i n  space is radia-  
t ion .  This waste heat can be rad ia ted  by a f l u i d - f i l l e d  tubular  r ad ia to r  (refs. 
1 and 2 )  or a moving-belt-type r ad ia to r  system (refs. 3 t o  5) .  
herein i s  t o  analyze a moving-belt-type r ad ia to r  system f o r  nuclear e l e c t r i c  
powerplants. Before proceeding fur ther ,  some des i r ab le  cha rac t e r i s t i c s  of a 
r ad ia to r  should be pointed out. F i r s t ,  as with any system put i n t o  space, it 
should be as l i g h t  as possible  and r e l i ab le .  
f i l l e d  tubular  r a d i a t o r  can be one of t h e  heavier components of the  powerplant 
and i s  physical ly  t h e  l a rges t .  
t h e  h o s t i l i t i e s  of t h e  space environment. Protect ion of f l u i d - f i l l e d  components 
from meteoroids i s  essent ia l ,  and, therefore,  t h e  exposed area of such components 
should be kept small. Third, it is des i rab le  t o  reduce t h e  r ad ia to r  t o  a com- 
pact package f o r  launching or atmospheric braking. 

The purpose 

According t o  reference 1 t h e  f lu id -  

Second, t h e  r ad ia to r  must be in sens i t i ve  t o  

The r ad ia to r  proposed i n  references 3 t o  5 cons is t s  of a continuously 
moving be l t ,  which travels a l t e r n a t e l y  t o  a heat exchanger where by v i r t u e  of 
i t s  heat capaci ty  it absorbs waste heat and through space where it r e j e c t s  heat 
by rad ia t ion  (see f i g .  1). More spec i f ica l ly ,  t h e  r ad ia to r  system could be com- 
posed of a b e l t  moving continuously across a rotat-  drum that contains t h e  
condensing cycle  f lu id .  If good heat transfer is  obtained between t h e  cycle  
f l u i d  and t h e  be l t ,  t h e  f l u i d - f i l l e d  drum W i l l  be r e l a t i v e l y  s m a l l ;  as a conse- 
quence, t h e  area vulnerable  t o  meteoroid damage will be smaller than t h a t  f o r  a 
comparable tubular rad ia tor .  Hence, t h e  meteoroid pro tec t ion  would be  rela- 
t i v e l y  l i gh t ,  which would make t h e  whole r ad ia to r  system comparatively l i g h t .  
The be l t ,  although large,  could probably be  r o l l e d  i n t o  a cmpact package f o r  
launching and atmospheric braking. 
t e n t i a l  f o r  s a t i s fy ing  some of t h e  des i rab le  cha rac t e r i s t i c s  of a waste-heat- 
r e j e c t  ion system. 

Thus, t h e  b e l t  r ad ia to r  system has the po- 

To date, s tud ies  of t h e  be l t  r ad ia to r  system have not given a detai led,  
rigorous heat- t ransfer  ana lys i s  of t r ans i en t  heat conduction through the drum 
w a l l  i n t o  t h e  b e l t .  No weight optimization has been presented t h a t  included a 
trade-off between t h e  drum and b e l t  weights t o  minimize t h e  heat-rejection- 
system weight. Also, parametric s tud ies  that show t h e  weight dependence of t h e  
drum-belt system on t h e  var ious system parameters are lacking. 

This report  presents  an analysis  of t h e  hea t - t ransfer  and weight character-  
i s t i c s  of a drum-belt r ad ia to r  system. A general  descr ip t ion  of b e l t  r ad ia to r  
systems i s  given first. This is followed by a de ta i l ed  discussion of t h e  drum- 
b e l t  system chosen f o r  t h e  analysis. Special  emphasis is placed on conductive 
heat t ransfer ,  and an eigenvalue so lu t ion  is  presented f o r  t h e  t r ans i en t  heat 
transfer between the d r u m  and t h e  b e l t .  A simple approximation f o r  t h i s  heat 
t r a n s f e r  i s  a l s o  developed f o r  ease of use. 
system weight i n  terms of Btu per  second of heat rad ia ted  i s  given, and t h e  

A parametric study of drum-belt 
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e f fec t  of various parameters on weight is shown. 
off  minimum weight f o r  a more favorable b e l t  speed and system i s  discussed. The 
weight of t h e  r ad ia to r  system i n  terms of ki lowatts  of e l e c t r i c a l  output is  a l s o  
presented with t he  use of t y p i c a l  powerplant cycle  assumptions. In addition, an 
i l l u s t r a t i v e  example of a nuclear, e l e c t r i c  power-conversion system incorporating 
a b e l t  rad ia tor  i s  presented with a simplified weight ana lys i s  f o r  a 5-megawatt 
c l a s s  powerplant. 

The relative m e r i t  of operation 

SYMBOLS 

A 

a 

B 

b 

C 

C 

D 

E 

e 

" 0  

F 

f 

f 
G 

Q 

H 

Hh 
h 

2VF/pbbCbV 

accelerat ion causing condensate i n  tirum t o  flow, f t / b 2  

b e l t  width = drum length, f t  

b e l t  thickness, f t  

coef f ic ien t  

spec i f ic  heat, Btu/(lb) (OR) 

drum diameter, f t  

coef f ic ien t  

- 3  pbb/6rpv~!I',, design parameter 

D , design parameter 
3 6  p r  Tech 

coef f ic ien t  

F COS h ( S  - X) 

C s i n  hax 

contact area/  fiBD 

32.2 f t / sec2  = 4.17X108 f't/hr 2 

contact conductance, ~tu/(sq fi) (hr) (OR) 

f i l m  condensation hea t - t ransfer  coef f ic ien t ,  Btu/(sq ft) (hr) (OR) 
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K coef f ic ien t  

Kdb 

k 

L 

r. 
1 
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P 

P 
e 

P (4 

Pc 

Q 

r '  

S 

S 

T 

Tav 

Te 

T i  

T W  

4 

-1 k+&) 
thermal conductivity, Btu/(f't) (hr) (OR) 

t o t a l  b e l t  length, f t  

length t o  give Reynolds number f o r  condensing heat t ransfer ,  f't 

l a t e n t  heat of vaporization, Btu/lb 

number of b e l t  loops 

3 

u 

e l e c t r i c a l  output, kw 

orthogonal weighting function 

contact pressure, lb/sq In. 

thermal output of heat source, w 

re jec ted  heat, w or Btu/sec 

thermal res i s tance  from condensing vapor t o  center  of b e l t  thickness, 
r '  + 3600/h, (sq ft ) (see) (OR>/Btu 

thermal res i s tance  from inner drum w a l l  surface t o  center of b e l t  thick-  

n e s s ~  ($ + $- + 3600, (sq fi) (see)  (OR)/Btu 

s + b, f t  

drum wall thickness, f t  

temperature (T at (x,t> in  drum wall and b e l t ) ,  R 0 

average temperature through b e l t  thickness at any time, OR 

turbine-exit  temperature (condensat ion t emperature), 0 R 

tu rb ine- in le t  temperature, OR 

inner wall temperature, R 0 



T1 

T2 
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vr 
W 

W t 

X 

X' 

Y 

z 

- a 
U' 

P 

Y 

E 

- 
E 

VF 

VR 

e 

A 

h 

average temperature through b e l t  thickness a f t e r  contact t = tc, OR 

average temperature through be l t  thickness before contact t = 0, R 

time, sec 

r a t i o  of turbine-exi t  t o  m a x i "  b e l t  temperature, Te/T1 

b e l t  speed, f t / s e c  

view f a c t o r  

0 

weight, l b  

drum plus b e l t  weight, w 

coordinate i n  sketch ( e )  

coordinate i n  sketch ( e )  

coordinate i n  sketch ( d )  

+ wb, l b  d 

t o t a l  powerplant spec i f ic  weight, lb/kw 

primary rad ia tor  spec i f ic  weight, lb/kw 

d m  weight parameter (drum-syst em weight/contact a rea) ,  lb/sq f t  

JvG 
emissivity 

net power output factor ,  1 - f r a c t i o n  of power i n t e r n a l l y  consumed 

product of component eff ic iencies ,  'qgr+qC~AqT 

constant determined by heat - t ransfer  boundary conditions 
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v i s c o s i t y  

4 . 7 3 ~ ~ 0 - l ~  Btu/(sec) (sq f ' t )  

density, lb/cu f t  

t e n s i l e  stress i n  b e l t ,  lb/sq in. 

allowable t e n s i l e  s t ress ,  lb/sq in. 

T 2 k  

kd/SH 

see eq. ( ~ 1 8 )  

( kd/kb (Tb/Yd ) 

Subscripts : 

A 

B 

b 

C 

C 

d 

i 

i n  

m, n 

0 

opt 

out 

T 

t 

a l t e r n a t o r  

b o i l e r  loop 

b e l t  

power conditioning 

contact 

drum 

turbine i n l e t  

inner b e l t  surface 

index numbers 

c ondens at e 

opt h u m  

outer b e l t  surface 

t urb ine 

t o t a l  
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GENERAL DESCRIPTION 

The b e l t  r ad ia to r  can be used i n  p r inc ip l e  with any system requir ing the  
r e j ec t ion  of waste heat. 
analyze t h e  be l t - r ad ia to r  system, it i s  necessary t o  speeify a pa r t i cu la r  power- 
conversion cycle t o  def ine t h e  components and heat-flow paths and t o  permit mini- 
mization of t h e  belt-radiator-system weight ( b e l t  and heat exchanger). In  so 
doing, it i s  a l s o  eas i e r  t o  show t h e  f u l l  p o t e n t i a l  of a b e l t  r ad ia to r  system t o  
reduce t h e  weight per kilowatt  of an e n t i r e  powerpla2-L compared t o  that of a 
tubular  rad ia tor .  

Although t h e  primary purpose of t h i s  study i s  t o  

A Rankine thermodynamic cycle t h a t  uses a turbogenerator w a s  chosen for t h e  
present study. Therefore, w a s t e  heat i s  removed from t h e  cycle f l u i d  i n  t h e  
r ad ia to r  system by condensation at an e s s e n t i a l l y  constant temperature determined 
by t h e  ove ra l l  system optimization. 
rubidium, potassium, or sodium depending on the  cycle temperatures and pres- 
sures .  

The cycle  f l u i d  could be mercury, cesium, 

The main problem of t h e  b e l t  r ad ia to r  system i s  t h e  t r a n s f e r  of heat t o  t h e  
b e l t .  The following methods may be considered (see f i g .  2) :  

(1) Heat can be t r ans fe r r ed  t o  t h e  b e l t  through surface contact with t h e  
outs ide of a ro t a t ing  or s t a t iona ry  drum within which the working f l u i d  i s  con- 
densed ( f ig s .  2 ( a )  t o  ( c ) ) .  

( 2 )  The b e l t  can be passed through an enclosure f i l l e d  with t h e  working 
vapor, which then condenses on the b e l t  ( f i g .  2 ( d ) ) .  

(3) The b e l t  can be passed between a s tack  of p l a t e s  or tubes tha t  r ad ia t e  
t o  t h e  b e l t  ( f i g .  2 ( e ) ) .  T h i s  configuration i s  l i g h t e r  i n  weight than t h a t  i n  
which t h e  tubes a r e  arranged i n  a s ing le  plane so  that they  can r ad ia t e  t o  space 
because l e s s  area i s  exposed t o  meteoroid damage. Thus, t h e  weight of t h e  mete- 
oroid shielding would be l e s s  than that f o r  a single-plane tubular  rad ia tor .  

(4) A "household f l a t  iron" type of heat exchanger, which could eliminate 
cyc l ic  f lex ing  of t h e  b e l t ,  can be used. The b e l t  can s l i d e  over t h e  f l a t  
i ron  on a l iquid-metal  in te r face .  As an a l t e r n a t e  method, t h e  f l a t  i ron  would 
move with t h e  b e l t  f o r  a short  d i s tance  while making contact, then would break 
contact and move back t o  i t s  i n i t i a l  locat ion,  where it contacts a new segment 
of t h e  b e l t  and repeats  t h e  process. 

The heat-reject ion system analyzed i n  d e t a i l  in this  report  i s  t h e  drum- 
b e l t  system ( f i g s .  2 ( a )  t o  ( c ) ) .  In general, whether t h e  drum i s  ro t a t ing  or 
t h e  b e l t  i s  revolving does not a f f e c t  t h e  analysis .  Sketches of poss ib le  b e l t  
configurations f o r  t h i s  system are presented i n  f i g u r e  3. 

For t h e  case of t h e  ro t a t ing  drum, t h e  need f o r  a ro t a t ing  s e a l  between t h e  
drum and t h e  rest of t h e  powerplant can be  eliminated by allowing t h e  e n t i r e  
powerplant t o  ro t a t e .  If t h e  b e l t  revolves around a s t a t iona ry  drum, t h e r e  i s  
no need for a ro t a t ing  seal. 
loops, as shown i n  f i g u r e  3(a). 
a t ion  from both s ides  of t h e  b e l t .  

If t h e  drum alone ro ta tes ,  t h e  b e l t  can form open 
The open-loop configuration permits heat radi-  

For t h e  case of t h e  revolving be l t ,  t h e  

7 



loops tend t o  c lose and thus r e s u l t  i n  an unfavorable view f a c t o r  f o r  t h e  ins ide  
of t h e  b e l t  ( f i g s .  3 (b)  and ( c ) ) .  Sometimes it may be des i rab le  t o  combine a 
revolving b e l t  and a r o t a t i n g  drum. 

For t h e  case i n  which t h e  drum alone ro ta tes ,  no contact pressure i s  pro- 
duced by t h e  tension generated from t h e  cent r i fuga l  force, which a c t s  on t h e  
b e l t  t r a v e l i n g  through t h e  rad ia t ion  loop. 
t r i f u g a l  force  tending t o  throw t h e  b e l t  off  t h e  drum. Basically, t h e  t e n s i l e  
s t r e s s  generated by a completely f l e x i b l e  b e l t  t r a v e l i n g  curved paths depends 
only on t h e  dens i ty  and speed of t h e  b e l t .  The tens ion  i s  independent of t h e  
radius of curvature of t h e  be l t ;  however, revolving t h e  b e l t  produces a tension 
that will give a contact pressure between t h e  drum and t h e  b e l t .  Some contact 
pyessure i s  always des i rab le  f o r  moving-belt systems. 

T h i s  t ens ion  simply cancels t h e  cen- 

€EAT-TRANSFER ANALYSIS 

The four  heat- t ransfer  processes t o  consider with t h e  drum-belt heat- 
r e j e c t i o n  system a r e  as follows: 

(1) The t r a n s f e r  of heat from t h e  condensing f l u i d  t o  t h e  drum inner w a l l  

( 2 )  Conduction through t h e  drum wall and across t h e  in te r face  i n t o  t h e  b e l t  

(3) Mechanical t r a n s f e r  by t h e  moving b e l t  

(4)  Rejection of heat i n t o  space by rad ia t ion  from t h e  b e l t  

Sketch (a) shows t h e  heat- t ransfer  path from t h e  vapor t o  t h e  b e l t  with t h e  
associated heat- t ransfer  conductances: 

Drum-b e It 
in te r face  1 

Adding t h e  rec iproca l  of t h e  conductances (see sketch (a ) )  gives t h e  thermal 
res is tance frm t h e  condensing vapor t o  t h e  center of t h e  b e l t  thickness (ap- 
proximation t o  t h e  e f f e c t i v e  dis tance t h a t  the  heat  f lows):  
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For a steady-state heat- t ransfer  process, t h e  thermal res i s tance  and t h e  temper- 
a t u r e  drop a r e  a l l  that  a r e  necessary t o  determine t h e  heat f lux.  For a t ran-  
s ien t  problem, such as f o r  t h e  drm and t h e  b e l t ,  t h e  heat capacity along t h e  
heat- t ransfer  path i s  a l s o  a fac tor .  

Condensing Heat Transfer 

For e i t h e r  a r o t a t i n g  or a s ta t ionary  drum, vapor from t h e  turb ine  exhaust 
could be channeled through tubes or passages bonded t o  t h e  ins ide  of t h e  drum. 
Condensing heat-transf e r  coef f ic ien ts  f o r  meta l l ic  vapor flowing i n  tubes, how- 
ever, have not been accurately established. Condensation d i r e c t l y  on t h e  drum 
wall i s  a l s o  possible if  t h e  drum wall serves as one s i d e  of t h e  flow passage. 
In e i t h e r  case, it i s  des i rab le  t o  obtain as high a condensing heat- t ransfer  co- 
e f f i c i e n t  as possible. 

For t h e  ro ta t ing  drum, it may be possible  f o r  condensation t o  occur d i r e c t l y  
on t h e  drum w a l l  without passages on t h e  inside of t h e  drum. An insight  i n t o  
t h e  problem involved i n  obtaining a high condensing heat- t ransfer  coeff ic ient  i n  
t h i s  case can be obtained from t h e  c l a s s i c a l  Nusselt equation f o r  f i l m  condens- 
ing given by reference 61 

where h i s  t h e  average heat- t ransfer  coeff ic ient  over t h e  length of flow .@, 
a is  t h e  accelerat ion causing t h e  condensate t o  flow, and 6T is  t h e  tempera- 
t u r e  drop across t h e  f i l m  thickness.  The other terms, po, k, 2, and p a r e  
condensate propert ies .  Centrifugal force  w i l l  keep t h e  condensate against  t h e  
w a l l ,  and a s l i g h t  t a p e r  i n  t h e  drum would cause t h e  condensate t o  flow t o  t h e  
la rge  end. The other terms i n  t h e  equation tha t  can be control led i n  t h e  design 
of t h e  drum a r e  E and a. For example, high values of a and low values of 

might be obtainable i n  t h e  peak t o  trough d i rec t ion  of a grooved s t r u c t u r e  
such as that  shown i n  sketch (b).  
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In t h e  parametric study presented i n  t h e  sect ion WEIGHT ANALYSIS, t h e  ef-  
f e c t  of t h e  condensing heat- t ransfer  coef f ic ien t  on radiator-system weight is  
included as an input var iable .  However, t h e  heat t r a n s f e r  between t h e  drum and 
t h e  b e l t  is, i n  general, much more c r i t i c a l  f o r  t h e  system and, therefore,  i s  
discussed next i n  g r e a t e r  d e t a i l .  

Drum t o  Belt Heat Transfer 

A solut ion for t h e  heat t r a n s f e r  through t h e  drum w a l l  i n t o  t h e  b e l t  i s  

The so lu t ion  requires  an expression t h a t  will give t h e  temperature at any 
needed t o  determine t h e  temperature drop across t h i s  par t  o f  t h e  heat- t ransfer  
path. 
point x throughout t h e  thickness of t h e  drum w a l l  and t h e  b e l t  as a function 
of t h e  time t, t h e  contact conductance H, t h e  thermal propert ies  of t h e  wall 
and t h e  b e l t  materials,  and t h e i r  thicknesses.  The analysis  of t h e  problem w a s  
based on t h e  model shown i n  sketch ( c ) .  

b 

of b e l t  

In  t h e  analysis,  an elemental length of b e l t  w i l l  be followed around t h e  
drum. The pos i t ion  of t h e  element along t h e  drum i s  determined by t h e  time t, 
t h e  b e l t  speed V, and t h e  drum diameter D. The heat t ransfer red  i n  t h e  longi- 
t u d i n a l  and circumferential  d i rec t ion  i s  s m a l l  compared with t h a t  i n  t h e  r a d i a l  
d i r e c t  ion. 
drum and t h e  b e l t  contacting surfaces w i l l  be considered. This d i rec t ion  w i l l  
be ca l led  t h e  x-direction. The inner drum-wall surface w i l l  be se t  at x = 0. 
The b e l t  surface opposite t h e  contacting surface w i l l  be  a t  x = S. The 
x-coordinate will be considered t o  be f ixed  i n  t h e  drum and r o t a t e  with t h e  
elemental length of b e l t  (and adjacent drum w a l l )  being studied. 

Thus, only heat t ransfer red  i n  t h e  d i r e c t  ion perpendicular t o  t h e  

If t h e  radius of t h e  drum is assumed l a r g e  compared t o  t h e  combined thick-  
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ness of t h e  b e l t  and t h e  drum w a l l ,  t h e  problem becomes a one-dimensional t ran-  
s ien t  heat- t ransfer  problem. - The equation for one-dimensional heat t ransyer  i s  

It w i l l  be assumed that t h e  inner drum-wall  surface (x = 0 )  w i l l  be kept at a 
constant temperature Tw by t h e  condensing vapor (boundary condition, see ap- 
pendix A). Actually, T, at any point would vary about an average value i n  a 
periodic manner because, as t h e  temperature of a contacting b e l t  element in- 
creases, t h e  dr iving temperature drop between t h e  vapor and t h e  b e l t  element de- 
creases. Thus t h e  l o c a l  heat- t ransfer  r a t e  i s  reduced. When t h e  heated b e l t  
element breaks contact with t h e  drum, it i s  replaced with a cool b e l t  element, 
which i n i t i a l l y  gives a la rge  temperature drop. Therefore, successive contacts 
of cool elemental b e l t  lengths t o  t h e  same point on t h e  drum causes t h e  l o c a l  
heat f l u x  t o  undergo periodic var ia t ions.  (The heat capacity i n  t h e  drum w a l l  
tends t o  dampen these  heat-flux var ia t ions  t o  t h e  inner drum wall surface. ) 
Changes i n  Tw, depending on the magnitude of t h e  condensing heat- t ransfer  co- 
e f f i c i e n t  h, w i l l ,  therefore,  occur t o  accommodate t h e  changes i n  heat f lux.  
The value assumed f o r  Tw f o r  purposes of t h i s  analysis  i s  considered equal 
t o  t h a t  needed for a steady-state condensing process determined by t h e  required 
powerplant heat -re j ect  ion rat e, t he c ondens ing heat - t ransfer  c oef f i c  Lent, t h e  
condensing area, and t h e  vapor temperature. 

The heat radiated from t h e  b e l t  surface a t  x = S during t h e  time of con- 
t a c t  i s  assumed negl igible  compared t o  t ha t  absorbed by t h e  b e l t  (boundary con- 
d i t i o n  2; see  appendix A). T h i s  simplifying assumption i s  conservative and a ' 

good approximation i n  view of t h e  general ly  s m a l l  r a t i o  of drum surface area t o  
b e l t  area and the  radiation-impedance e f fec t  of t h e  meteoroid shield.  A s e r i e s  
solut ion f o r  t h i s  problem i s  derived i n  appendix A. 
parametric form, referenced t o  t h e  average incoming b e l t  temperature T2 and 
t h e  inner w a l l  temperature Tw. 

The r e s u l t s  a r e  obtained i n  

The f i n a l  equations are t h e  following: 

The l o c a l  temperature through t h e  drum w a l l  i n  parametric form i s  

n = l  

and through t h e  b e l t  thickness i s  

n=l  

..... .. -.-..... .,.. 
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(The conventional notat ion f o r  l e f t -  and right-hand limits i s  used: s- denotes 
t h e  left-hand l i m i t  and sf denotes t h e  r i g h t . )  

where 

y2 = k/pc 

where T(x,O) i s  t h e  i n i t i a l  temperature d i s t r i b u t i o n  i n  parametric form, 
1 - (T - T,)/(Tw - T2)  

F = n c  n n n  

k y cos (Ad) s 
n d b  

A =  _ n Y 

' d  - (S - s )  %yd s i n  ( A  ) 
d n 

and 

p = -  'b 'b 

'dCd 

The method f o r  determining t h e  A ' s  i s  discussed i n  appendix A. The A ' s  a r e  
dependent on H, and t h e  thermal propert ies  and t h e  thicknesses of t h e  drum w a l l  
and t h e  b e l t .  

Contact conductance H i s  t h e  heat- t ransfer  r a t e  between two surfaces 
divided by t h e  product of t h e  apparent area of contact and t h e i r  temperature d i f -  
ference. It is a function of t h e  percent of a c t u a l  physical  contact, t h e  s i z e  
of t h e  individual  contacts, and t h e  conductances of t h e  two contacting mater ia ls  
( re f .  7 ) .  
contact, H would equal m. Actual physical  contact between two metal surfaces 
without high contact pressure i s  usually only a very s m a l l  f r a c t i o n  of 1 per- 
cent of t h e  apparent contact. 

If perfect  physical  contact were made over t h e  e n t i r e  area of apparent 

To compute numerical r e s u l t s  from equations (3) and (4),  a drum w a l l  of 
0.05-inch-thick molybdenum was assumed, which i s  possibly a good mater ia l  because 
of i t s  high heat conductivity and s t rength a t  high temperatures and i t s  r e s i s t -  
ance t o  corrosion by possible  liquid-metal working f luids .  
t o  be 0.01-inch-thick beryllium. Beryllium was chosen because of i t s  high spe- 
c i f i c  heat, which i s  desirable  i n  a b e l t  rad ia tor .  The propert ies  assumed f o r  
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molybdenum were 
Btu/ ( l b )  ( O R ) .  
c = 0.5 Btu/(lb)(OR). 

k = 84.5 Btu/(f t ) (hr)(OR),  p = 636 lb/cu f t ,  and c = 0.065 
For beryllium, k = 80 Btu / ( f t  ) ( h r )  (OR), p = 112 lb/cu f t ,  and 

These values a r e  f o r  room temperatures. 

Local temperature. - The time h is tory  of the temperature through the drum 
w a l l  and the b e l t  thickness i n  terms of the temperature parameter 
(T - T 2 ) / ( T w  - T 2 )  i s  shown f o r  
T h i s  value of H w a s  chosen because it shows a s igni f icant  var ia t ion  i n  t h e  drum 
w a l l  temperature with time. 
t h i s  var ia t ion  and hence does not give t h e  b e l t  temperature as accurately.)  
lower values of H, t h e  v a r i a t i o n  of t h e  temperature parameter through t h e  drum 
w a l l  and t h e  b e l t  i s  l e s s .  A n  H of m would eliminate t h e  temperature drop 
across t h e  contact. 
t h e  temperature drop across t h e  contact i s  much l a r g e r  than t h e  drop i n  the  w a l l  
or t h e  b e l t  thickness ( see  f i g .  4) .  

For calculat ion of t h e  curves i n  f igure  4, t h e  i n i t i a l  temperature d i s t r i -  
bution used t o  obtain t h e  coef f ic ien ts  Cn and Fn was a uniform value of T2 
throughout t h e  b e l t  thickness and a uniform value of Tw throughout t h e  drum 
w a l l .  The assumption f o r  t h e  temperature through t h e  b e l t  i s  v a l i d  for a l l  
cases. The assumption f o r  t h e  temperature through t h e  drum i s  always good f o r  
t h e  f irst  cycle. A s  an elemental segment of t h e  drum w a l l  i s  cycled, t h a t  is, 
contacted w i t h  a new cool elemental b e l t  length, t h e  w a l l  segment may not have 
returned t o  t h e  uniform temperature value of 
(See curve f o r  t, = 0.02 see ( f i g .  4) . )  However, t h e  average b e l t  temperature 
a f t e r  contact i s  not very s i g n i f i c a n t l y  affected f o r  t h e  range of i n i t i a l  condi- 
t ions obtained during p r a c t i c a l  operat ion. 

Temperature a f t e r  contact. - The average temperature a f t e r  contact i s  of 
i n t e r e s t  f o r  determining t h e  optimum contact time. The heat t h e  be l t  takes  away 
from t h e  drum i s  a function of t h e  difference between t h e  average temperature 
a f t e r  contact T1 and t h e  average temperature before contact T2. The average 

temperature through t h e  b e l t  thickness i s  defined as TaT - & l s T h x .  - 

The value of t h i s  i n t e g r a l  a f t e r  t h e  t o t a l  contact time t, i s  defined as T1: 
A n  expression f o r  T1 

H = 10,000 Btu/(sq f t ) ( h r ) ( O R )  i n  f igure  4. 

(The heat- t ransfer  so lu t ion  of r e f .  5 does not give 
For 

Even for t h e  r e l a t i v e l y  high H = 10,000 Btu/(sq f%)(hr)(%), 

Tw ( i . e . ,  (T  - T Z ) / ( T w  - T z )  = 1)). 

s - s  

i n  parametric form as a function of t o t a l  contact time i s  

W - 

L ' u '  n ' 

(See appendix A f o r  derivation. ) 

In t h e  solut ion of equation (5), no more than  f i v e  terms of t h e  s e r i e s  were 
necessary. The b e l t  high-temperature parameter ( T 1  - Tz)/(T, - T2) i s  shown i n  
f i g u r e  5 f o r  several  values of H as a function of t,. W i t h  increasing values 
of t, (obtained by slowing b e l t  speed or increasing t h e  drum circumference) T 1  
approaches Tw. For any f ixed t,, T i  increases as H increases.  For example, 
at t, = 0.1 second, t h e  value of (TI - T2) / (Tw - T2)  ranges from nearly 1 .0  f o r  
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H = m t o  0.07 f o r  
t i a l .  conditions and (TI - T2)/(Tw - T2)  is  discussed i n  appendix B. 

H = 125 Btu/(sq f t ) ( h r ) ( O R ) .  The e f fec t  of cycling on i n i -  

Simple Approximat ion of D r u m  t o  Belt H e a t  Transfer 

Obtaining values of (T1 - T2)/(Tw - T2) from t h e  series so lu t ion  (eq. (5) )  
is  rather involved. A simple approximation can be obtained, however, i f  it i s  
assumed that t h e  heat flows i n t o  t h e  b e l t  through a pure res i s tance  from t h e  in-  
ner drum wall surface and t h e  center  of t h e  b e l t  thickness  r '  given by 

The driving temperature d i f fe rence  across  t h i s  r e s i s t ance  is  

Tav foot of t h e  b e l t  i s  pbbcp. Thus 

Tw - Tav where 
is t h e  average b e l t  temperature a t  any time. The heat capacity per  square 

Rearranging equation ( 7 ) and i n t  egrat  ing give 

- 
Y' 6bCb 

= e  Tw - T1 

Tw - T2 

Subtracting both s ides  of equation (8) from u n i t y  gives  

- 
r' %bcb 

= 1 - e  T 1  - T2 
Tw - T2 

( 9 )  

This simple approximation (eq. 
so lu t ion  f o r  about 
t i o n  (9 )  can be used i n  parametric s tud ies  or analyses provided t h a t  t h e  value 
of 

( 9 ) )  is  shown t o  compare favorably with t h e  s e r i e s  
H < 10,000 B u / ( s q  ft ) (hr)  ( O R )  i n  f igu re  6. Hence, equa- 

H i s  not g rea t e r  than  about 10,000 Btu/(sq f't ) (hr) (OR) .  

B e l t  Hea t -Ra t  e Capacity 

The 

which I s  
Lett ing 

c b 7  T 1 -  
rate at  which t h e  b e l t  t akes  heat away frm t h e  drum is  t h e  product of 
T2, and t h e  weight flow of t h e  b e l t  leaving (o r  a r r iv ing  a t )  t h e  drum, 

T = T ~ / T ~  g ives  
NVBpbb. This m u s t  also equal t h e  heat rad ia ted  from t h e  b e l t  q. 

14 



where N i s  the  number of loops i n  the  b e l t  (see f ig .  3). Multiloop b e l t s  lower 
t h e  b e l t  speed. If all parameters except V and N are held constant i n  equa- 
t i o n  (lo), then 
loops due t o  t h e  view f a c t o r  and mechanical considerations.  The r e l a t i o n  be- 
tween speed and geometry will be discussed i n  t h e  sec t ion  Speed and Geometry. 

V - 1/N. However, t he re  i s  a p r a c t i c a l  l i m i t  t o  t he  number of 

Bel t  He a t  Radiation 
- 

I n  this analysis,  a combined emissivi ty  and view f a c t o r  E w i l l  be used., 
which i s  defined as 

- - 1  
out i n  

where t h e  subscr ipts  out and i n  r e f e r  t o  t h e  two s ides  of t h e  b e l t .  
heat radiated f rom t h e  b e l t  i s  

Thus, t h e  

= Z~ZF~IB (11) 
where 

!? = 1. L lTz T4 dL 

The der ivat ion of F4 f r o m  reference 3 i s  given as follows: For a uni t  
area of t h e  b e l t  i n  t h e  free-space par t  of t h e  c i r c u i t ,  t h e  heat radiated equals 
t h e  l o s s  i n  s tored heat, or 

(13) - 4  2 v ~ T  d t  = - p bc dT b b  

Since d t  = (dL/V),  t hen  l e t t i n g  A = 2 v f / c b ~ 6 b  r e s u l t s  i n  

d L = - -  
AT4 dT 3’’ T1 

Integrat ing equation (14) y ie lds  

L = a ( $ - $ )  N 

Subst i tut ing equations (14) and (15) i n t o  equation (12)  arid in tegra t ing  from 
T1 t o  T2 give 

4 T =  



Equation (16) toge ther  with equation (11) can be used t o  determine t h e  b e l t  a rea  
required f o r  a given heat r e j e c t  ion. 

WEIGRT ANALYSIS 

It i s  des i rab le  t o  ca lcu la te  and minimize t h e  drum plus t h e  b e l t  weight per 
heat-reject ion r a t e  wt/q.. Consider t h e  case of a f ixed value of r. The 
t r a n s f e r  of heat from t h e  drum t o  t h e  b e l t  can be handled by (1) making t h e  drum 
la rge  t o  g ive  many square feet of contact a r ea  or ( 2 )  making t h e  d i f fe rence  be- 
tween T1 and t h e  vapor temperature Te large.  Using a la rge  drum r e s u l t s  i n  
a high drum weight but a low b e l t  weight. A l a r g e  temperature d i f fe rence  gives 
a s m a l l ,  l i g h t  drum but requires  a la rge  a rea  f o r  t h e  rad ia t ion  process, which 
makes t h e  b e l t  heavy. A compromise between t h e  two ways of handling t h i s  heat 
t r a n s f e r  gives t h e  l i g h t e s t  heat-reject ion system. To minimize t h e  t o t a l  weight 
of t h e  b e l t  r ad ia to r  system mathematically, it i s  necessary t o  develop an ana- 
l y t i c a l  r e l a t i o n  f o r  t h e  t o t a l  weight of t h e  system. 

Weight Relations 

Belt weight. - The weight of t h e  b e l t  wb i s  

Subst i tut ing f o r  LB by means of equations (11) and (16)  gives 

Equation (18) should be used when t h e  b e l t  thickness  b is  f ixed.  It can 
be seen from equation (18) t h a t  b Wb/q 
small. If a l l  parameters except T a r e  f ixed  i n  equation (18), T = 1 gives t h e  
lowest poss ib le  Wb; however, equation (10) shows t h a t  as z + 1 with a l l  pa- 
rameters except NVB f ixed  "€3 + to. Thus, some value of T < l must be used. 

should be s m a l l  t o  make t h e  value of 

Another expression can be obtained f o r  wb by considering NVB f ixed  and 
b var iable .  Subs t i tu t ing  f o r  b from equation (10) i n t o  equation (18) gives  

which f o r  constant q, NVB, and T1 gives zopt = 0.69 (a result presented i n  
r e f .  3).  A b e l t  weight minimization based on a f ixed  b e l t  aspect ra , t io  L/B 
was derived i n  reference 4. 
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D r u m  weight. - A drum weight parameter p, w i l l  be used t h a t  i s  defined as 
t h e  weight of t h e  drum and i t s  accessories  ( ro l l e r s ,  drive mechanism, and mete- 
oroid sh l e ld )  divided by t h e  contact area.  
t h e  drum-belt radiator-system weight, J3 was assumed t o  be independent of t o t a l  
contact area. Actually, t h e  drum weight parameter w i l l  not be e n t l r e l y  inde- 
pendent of drum s ize .  For example, t h e  meteoroid sh ie ld  weight va r i e s  as t h e  
1.3 power of t h e  drum area  t o  give t h e  same probabi l i ty  of no puncture f o r  d i f -  
f e r en t  s i z e  areas .  However, f o r  t h e  range of va r i a t ion  of drum area  f o r  a given 
minimization calculation, it should be acceptable t o  assume t h a t  p is  constant. 
As  a r e s u l t  of this assumption i n  t h e  weight minimization, t h e  prec ise  minimum 
i s  not obtained; however, t h e  e f f ec t  of d i f f e ren t  values of p on t o t a l  system 
weight i s  analyzed. 

For s impl ic i ty  i n  t h e  minimization of 

The weight of t h e  drum wd i s  then t h e  contact area (assumed t o  be GaD) 
mult ipl ied by J3. 

where G contact area/liBD, For s impl ic i ty  t h e  approximate heat- t ransfer  solu- 
t i o n  (eq. ( 8 ) )  w i l l  be  used t o  obtain D. To include h i n  equation ( 8 ) ,  I: 
(eq. (1)) w i l l  be subs t i tu ted  f o r  r ' (eq, (6)), and, correspondingly, t h e  
turbine-exi t  temperature Te w i l l  be subs t i tu ted  f o r  T,, Then subs t i tu t ing  
XGD/NV f o r  t, and solving f o r  D give 

Except where noted, G = 1.0 w i l l  be assumed f o r  s implici ty .  

The use of t h e  approximate heat- t ransfer  so lu t ion  (eq. ( 8 ) )  produces re- 
s u l t s  t h a t  d i f f e r  somewhat from t h e  s e r i e s  so lu t ion  f o r  H = m j  however, f o r  
H = coy t h e  drum weight i s  a s m a l l  p a r t  of t h e  drum-belt-system weight. For cases 
of l o w  H, where t h e  drum weight i s  la rge  r e l a t i v e  t o  t h e  b e l t  weight, t h e  ap- 
proximate solut ion i s  accurate.  In general, f o r  a 0.05-inch-thick molybdenum 
drum w a l l  and 0.01-inch-thick beryllium b e l t ,  t h e  simple approximate heat- 
t r a n s f e r  so lu t ion  overestimates t, f o r  (TI - T2) / (Tw - T 2 )  < 0.8 and under 
estimates t, 
( o r  drum weight) i s  d i r e c t l y  proport ional  t o  t h e  e r ro r  i n  t,, which can be 
determined from f igu re  6. Subs t i tu t ing  B from equation (10) and D from 
equation ( 2 1 )  i n t o  equation (20) and l e t t i n g  

f o r  (TI - T2)/(T, - T2)  > 0.8 ( f ig .  6 ) .  The e r ro r  i n  drum s i z e  

Te/T1 = u y ie ld  

Weight Minimization 

The t o t a l  weight of t h e  heat-reject ion system i s  
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where Wd i s  obtained from equation (22), and equation (17)  or (18) can be used 
t o  determine wb depending on whether b or NVB i s  considered var iab le .  If 
b i s  considered constant, subs t i t u t ing  these  expressions for wd and % i n t o  
equation (23 )  w i t h  T1 = Te/u and dividing by g give 

where b = uq/NVBcbT,(l - z)& from equation (10). The choice of equation (24) 
or (25) for minimizing t h e  system weight depends on whether a minimum value of 
b or some value of NVB/q i s  the-  l imi t ing  parameter. 

Both t h e  individual  and combined drum and b e l t  weights a r e  dependent on t h e  
temperature r a t i o s  z aqd u as can ,be seen i n  equations (24) and (25).  For 
equation (25)  t h e  p a r t i a l  der iva t ives  of wt/q with respect  t o  z and u can 
be s e t  equal t o  zero simultaneously t o  obtain a mFnimum value of w t / g  however, 
f o r  a f ixed  value of b (eq. (24) )  it i s  impossible t o  s e t  t h e  two p a r t i a l  de- 
r iva t ives  equal t o  zero simultaneously. 

The case f o r  f ixed  b (eq. (24) )  w i l l  be used i n  t h e  analysis  herein. The 
parameters considered constant a r e  +,b/F, P, r, and Te. Note t h a t  t h e  maximum 
b e l t  temperature, TI, which was considered a constant i n  t h e  previous sect ion i s  
now a var iable .  f o r  t h e  l a t t e r  case can be obtained for a con- 

s t an t  7 by s e t t i n g  2 aU = 0 (eq. (24 ) ) .  Se t t ing  t h i s  p a r t i a l  der iva t ive  

equal t o  zero and rearranging give 

A minimum wt/q 

a o /  
u ( l  - z) u - z  

& E  Pob - - (u - z)(u - 1) 
6 r P v 3 :  

Figure 7 shows t h e  r e l a t ions  among &, u, and a, which give t h e  minimum 
wt/q for z f ixed  and u var iable .  If both z and 
t h e  lowest value of wt/q occurs as T + 1.0, although 
of w t / g  with respect t o  z as z + 1.0 i s  not zero. 
however, z = 1.0 is a phys ica l ly  impossible value. 

u a r e  var iable ,  then 
t h e  p a r t i a l  der iva t ive  

As  previously indicated, 

18 



Effect of Variables 

The e f f ec t  of d i f f e r e n t  values of t h e  drum-belt -syst em design parameter on 
t h e  system weight w i l l  now be discussed, 
wt/q and, i n  the sec t ion  APPLICATIOR TO POl4ERPLAXT, as r ad ia to r  weight per  k i lo-  
w a t t  of e l e c t r i c a l  output f o r  an assumed powerplant cycle. 
of t h e  strongest parameters on t h e  weight of i l l u s t r a t i v e  tu rboe lec t r i c  space 
powerplants i s  shown by using some simple approximations. 

The results be f irst  presented as 

Finally,  t h e  e f f ec t  

In determining t h e  e f fec t  of H, h, t h e  b e l t  cycle temperature r a t i o  T, 

and Te on t h e  r ad ia to r  weight, t h e  following assumptions were made: 

(1) b b / F  = 0.1038 pound per square - foot, which corresponds t o  a beryll ium 
b e l t  0.01 inch t h i c k  with 7 = 0.9 (or 
For materials  with dens i t i e s  near that of s t ee l ,  t h e  thicknesses would be 0.0022 
and 0.0011 inch. 

E = 0.45 with a 0.005-inch thickness) .  

( 2 )  j3 = 16 lb/sq f t  (appendix C )  . 
(3) u = value that gives t h e  minimum weight ( f i g .  7 ) .  

(4) In t h e  determination of r, a b e l t  0.01-inch-thick beryll ium and a drum 
w a l l  of 0.05-inch-thick molybdenum were assumed. 

Btu/(sq ft) (hr) (OR) f o r  (5 + 3-l- = Kdb. The weight r e s u l t s  f o r  a b e l t  of 

0.005-inch-thick beryll ium or f o r  b e l t s  made of d i f f e ren t  materials would be 
negl igibly d i f f e ren t  f o r  t h e  same value of 

This gfves a value of 18,400 

kd 2k 

@b/S. 

_ _  Turkine-exit .- temperature. - The va r i a t ion  of wt/q w%th turbine-exi t  tem- 
perature  Tradi&or-lnlet vapor temperature) Te, as seen i n  f i g u r e  8, i s  strong. 
This would be expected because of t h e  
t o t a l  belt-system weiglrt does not vary as 
which i s  a comparison of a T i 4  curve with a few of t h e  T = 0.69 curves from 
f igu re  8. I n  f igu re  9, wt/q is approximately proport ional  t o  T i 2  f o r  
H = 125 Btu/(sq f ' t)(hr)(%) and t o  T;3*3 for H = 00. 

T4 rad ia t ion- ra te  re la t ion;  however, t h e  
Ti". T h i s  i s  shown i n  f i g u r e  9, 

W t h .  
for 

Contact . .  conductance. - Figure 8 a l s o  shows t h a t  H has a l a rge  e f f ec t  on 
For example, i n  t h e  higher temperature range i n  this figure,  t h e  weight 

H = 125 Etu/(sq f%)(hr)('?R) is  more than 10 t imes that  f o r  Thus, H = m. 
from a weight point of view, high values of H a r e  very des i rab le j  however, 
high values of are normally associated with high values of contact pressure 
pc. For example, i n  a vacuum of m i l l i m e t e r  of mercury, f o r  one magnesium 
t o  magnesium and several aluminumto aluminum contacts  with surface f i n i s h e s  
ranging from 6 t o  45 microinches, conductances were found t o  range from 15 t o  35 

H 

1 
2 

Btu/(sq f%) ( h r )  (41) for a contact pressure of 2- lb/sq in. and 55 t o  

125 Btu/(sq ft)(hr)(OR) at 35 lb/sq in. (ref. 8). For an aluminum contact t o  
uranium dioxide contact at 250° C wTth a 90-microinch f in i sh ,  conductances of 



1600 and 3500 Btu/(sq ft ) (hr) (OR)  were obtained at contact pressures of 100 and 
200 lb/sq in., respec t ive ly  ( r e f .  9 ) .  

It i s  doubtful, however, that high contact pressures  could be used i n  a b e l t  
r ad ia to r  system without excessive weight pena l t ies .  To obtain good contact con- 
ductance without extremely high contact pressure, a t h i n  f i lm  of l i q u i d  m e t a l  
could be used between the surfaces.  (Ref. 7 repor t s  the use of l i q u i d  metal  be- 
tween surfaces  to increase contact conductance. ) This method could be applied 
t o  t h e  b e l t  r ad ia to r  system by using l i q u i d  metals t h a t  have a very low evapora- 
t i o n  r a t e  at operat ing b e l t  temperatures. The low evaporation rate i s  necessary 
t o  minimize evaporation losses  i n  t h e  vacuum of space. Possible metals, which 
might be used i n  t h i s  respect over a wide range of temperatures, a r e  melted t i n  
and gallium. The l i q u i d  f i l m  must be a t  l e a s t  as t h i c k  as t h e  sum of t h e  rough- 
ness of t h e  two contacting surfaces.  The l i q u i d  metal  used must a l s o  have t h e  
a b i l i t y  t o  wet  t h e  surfaces  but not amalgamate with them or have other  harmful 
ef fec ts .  

If a wetting f i l m  of l i q u i d  t i n  0.0002 inch th i ck  ( t o  cover a combined 
roughness of 200 microinches) were maintained on both contacting surfaces ( the  
drum surface and one s i d e  of t h e  b e l t ) ,  H 
Btu/(sq ft)(br)(%). A conductivity of 33.9 B t ~ / ( f - t ) ( h r ) ( ~ R )  w a s  used f o r  t i n .  
The evaporation loss  of t i n ,  which melts a t  910' R, would be 4X10'6 inch per  
year at 1480' R, 4XL04 inch per  year at 1680' R, and 0,04 inch per  year at 
1920' R ( r e f .  10). A loss  of 0.04 inch per year (corresponding t o  more than  
10 times t h e  weight of a 0.01-inch-thick beryllium b e l t )  would be prohibi t ive,  
but a l o s s  of 4xL0'4 inch per  year or l e s s  would probably be to le rab le .  
open-loop system, such as i n  f igu re  3, t h e r e  i s  a penal ty  f o r  coating one s i d e  
of t h e  b e l t  with t i n .  Ordinarily, rad ia t ion  would be expected from both s ides  
of an open loop of t h e  be l t ,  but if one s ide  of t h e  b e l t  were tinued, that s i d e  
would r ad ia t e  very l i t t l e .  Thus, the average emissivi ty  E of the b e l t  would 
be cut near ly  i n  half. The weight penal ty  of t h i s  w i l l  be discussed i n  t h e  
sec t ion  Effect  of Design Variables, If a l i q u i d  m e t a l  coating i s  used on the 
be l t ,  it i s  important t h a t  it be kept on t h e  ins ide  of t h e  b e l t  loops f o r  a 
closed-loop system (f igs .  3(b) and ( e ) ) .  This would not be possible  with t h e  
configuration of reference 5 (f ig .  2 ( b ) )  s ince t h e  outs ide surface of t h e  loops 
contact t h e  drum; however, t h e  a l t e r n a t e  method of f igu re  X(c) could be used. 

would be about 2,000,000 

For a n  

The contact conductance a l s o  exerts  a l a rge  e f fec t  on t h e  r a t i o  of drum 
weight t o  b e l t  weight. This is shown i n  f igu re  10 for t h e  minimum weight value 
of u. The weight of t h e  drwn r e l a t i v e  to t h e  b e l t  decreases with increasing H 
and increases  with increasing Te. 

Bel t  cycle temperature r a t io .  - The e f f ec t  of t h e  b e l t  cycle temperature 
r a t i o  z on r ad ia to r  weight is  minor compared t o  t h e  e f f ec t  of H, a s  a l s o  
shown i n  f i g u r e  8. For values of z f r m t h e  physical ly  impossible value of 
1.0 ( i n f i n i t e  b e l t  speed) down t o  a value of 0.69, i t s  l a rges t  e f f ec t  on 
occurs a t  l o w  temperatures f o r  high values of H. 

wt/q 

Condensing coef f ic ien t .  - The e f f ec t  of h on radiator-system weight i s  
shown i n  f igure  11 f o r  h = 10,000, 100,000, and 1,000,000 Btu/(sq f t )  (hr)  ( O R ) .  
I n  t h i s  f igure,  t h e  d i f fe rence  between curves f o r  h =.a and h = 1,000,000 
Btu/(sq ft)(hr)( 'R) are imperceptible. Notice t h e  e f f e c t  of h on t h e  value 
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of wt/q depends on t h e  value of H. For values of h l e s s  than 100,000 Btu/ 
(sq f t )  (hr)('R), t h e  e f f e c t  of h on wt/q becomes very l a rge  f o r  high values 
of H. 

Although some data with mercury and s o d i m  vapors ind ica te  t h a t  condensing 
hea t - t ransfer  coe f f i c i en t s  of t h e  order of 100,000 Btu/(sq f t )  (hr) (OR)  or bet-  
t e r  ca.n be obtained with s t a t i c  systems ( r e f .  ll), experimentation with drum 
configurations will be necessary t o  e s t ab l i sh  t h e  h l e v e l s  f o r  these systems. 
I n  any event, it i s  c l e a r  from f igu re  10 t h a t  high values of both H and h 
a re  required. for low weight. 

To avoid. r e s t r i c t i n g  fu tu re  f igures  t o  a p a r t i c u l a r  condensing coef f ic ien t ,  
a coef f ic ien t  ca l l ed  Hh, which includes h, w i l l  be used ins tead  of H where 

1 1 1  - =  - + -  
9 l H h  

Temtgrature . . - .  r a t i o  (u). - In t h e  previous calculations,  values of u w e r e  
used that corresponded t o  minimum weight for f ixed  values of T and the design 
parameter (eq .  ( 2 6 ) ) .  For p r a c t i c a l  reasons, however, it may be des i rab le  t o  
use other  than  t h e  minimum weight value of u. For  example, i n  some cases, it 
may be des i rab le  t o  design for very s m a l l  b e l t  s ize ,  o r  t h e  drum s i z e  correspond- 
ing t o  minimum weight may be Impractically s m a l l .  Since, i n  general, b e l t  s i z e  
increases  with u and drum s i z e  decreases with u, adjustment of component s i z e  
can be obtained by varying u. 

P l o t s  of t h e  va r i a t ion  of wt/q with u a r e  shown i n  f igu re  1 2  f o r  an  in- 
l e t  vapor temperature of 1210° R and 
temperatures as indicated i n  f i g u r e  13, although t h e  minimum range is  f l a t t e r  
f o r  higher temperatures. There is, therefore ,  an appreciable range i n  u for 
which drum s i z e  can be t raded fo r  b e l t  s i z e  without excessive weight penalty. 

T = 0.9. The e f f ec t  i s  sFmilar for other  

SYSTEM G E O m Y  AND OPEELATION 

T h i s  sec t ion  c o n t a b s  a discussion of b e l t  system geometry, b e l t  speed, 
contact time, revolving s t r e s s ,  b e l t  temperature r a t io ,  and t h e  r e l a t ions  that 
ex i s t  between these  parameters. 

Speed and Geometry 

The b e l t  speed i s  independent of t h e  drum area  but depends on t h e  drum 
length, as can be seen from a rearrangement of equation (10) where Te/u = Tl 

qu ' c T =  NB&&,,Te'b(l - 7)  

Belt  speed can be s e t  according t o  t h e  system mechanical considerations such as 
b e l t  stress, f lex ing  cycles, and drive l imi ta t ions .  The s e t t i n g  of t h e  b e l t  
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speed determines t h e  geometry of t h e  system; however, t h e r e  are p r a c t i c a l  limits 
of geometry, which i n  t u r n  may l i m i t  t h e  possible  speed range. 

Relations for t h e  b e l t  and drum geometry as r e l a t e d  t o  b e l t  speed and heat-  
r e j ec t ion  r a t e  can be obtained from equations (lo), 
t i o n s  (10) and (21)  and by subs t i t u t ing  Te/u = T1 and T = T2/T1 

(ll), and (21) .  From equa- 

V2N2(pbb~)2rTe(1  - T )  - D =  
B qrcGu 

and from equations (10) and (u) 

and, expanding F4 according t o  equation (16)  

It can be seen, therefore ,  t h a t  f o r  a given set of design parameters. The b e l t  
and drum geometry will be  determined p r inc ipa l ly  by t h e  b e l t  speed and t h e  number 
of b e l t  Loops, or i n  some cases where geometry i s  of prime importance, it w i l l  
set t h e  speed. Calculated va r i a t ions  of the r a t i o s  L/B and D/B with V2/q 
are shown i n  figure 14 f o r  two values of Hh and Ye. The ca lcu la t ions  were 
made f o r  N = 2 and T = 0.69. The D/B r a t i o  i s  very sens i t i ve  t o  t h e  value 
of Hh, but t h e  va lue  of L/B is more dependent on turbine-exi t  temperature. 

For a f ixed  speed, t h e  D/B and L/B r a t i o s  decrease as q increases.  
Th i s  may give impract ical ly  small D/B r a t i o s  for a l a r g e  g, but severa l  drums 
could be used t o  make the r a t i o  of each ind iv idua l  drum more prac t ica l .  D/B 

Speed and Revolving S t r e s s  

Tensile s t r e s s .  - For a revolving be l t ,  the approximate tensile stress at a 
r o l l e r  due t o  cen t r i fuga l  acce lera t ion  can be  derived as follows: 
v e l o c i t y  of t h e  revolving be l t  i s  
t i o n  a t  a dis tance 

The angular 
2V/D, which makes t h e  cent r i fuga l  accelera- 

from t h e  drum approximately (2V/D)2  y ( see  sketch ( d ) ) .  y 

T 
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Thus, t h e  t e n s i l e  s t r e s s  contr ibut ion of an  elemental l ength  of b e l t  dy i n  
lb/sq in.  i s  approximately 

Integrat ion of t h i s  expression from y = 0 t o  y = L/2N gives  

or subs t i t u t ing  f o r  L and D from q u a t l o n s  (28) and (30) ,  respectively,  

Variations of b e l t  stress with b e l t  speed a r e  shown i n  f i g u r e  15. 

&b/Z = 0.1038 lb /sq  f't with 

The con- 
d i t i ons  a r e  necessar i ly  d i f f e ren t  from those  of f i g u r e  14, which used an 
E = 0-9 (implied frm b = 0.01-inch-thick 'beryl- 
l i u m ) ,  s ince f o r  a revolving system with closed loops, t h e  view f a c t o r  f o r  the 
ins ide  of t h e  loop would be near ly  zero. Consequently, a value of F = 0.45 
was used i n  f i g u r e  15. 

- 

The s t r e s ses  shown i n  f igure  15 a re  prohib i t ive ly  high f o r  high values of V 
and Hh. (High values of Hh correspond t o  low values of r i n  eq. ( 3 2 ) ) .  
A t  a given V, high values of Hh produce a high s t r e s s  because t h e  low r e s i s t -  
ance r r e s u l t s  i n  a small drum diameter D (eq. (Zl)), which i n  t u r n  gives a 
high angular ve loc i ty  2V/D and, hence, a high cent r i fuga l  force.  For a given 
b e l t  thickness,  t h e  use of very low b e l t  speeds t o  reduce s t resses ,  however, w i l l  
r e s u l t  i n  very s m a l l  r a t i o s  of D/B (eq. ( 2 8 ) ) .  Thus, physical ly  impossible or 
impractical  drum geometries ( w i t h  very s m a l l  diameters and very long lengths)  may 
r e s u l t .  Belt speed can be reduced without l a rge  changes i n  D/B if  b i s  in-  
creased with B fixed; however, t h i s  w i l l  r e s u l t  i n  a l a rge r  minimum weight. 

For a f ixed  V, t h e  u could be reduced by Increasing N (eq. (32) ) -  If' 
B i s  held constant as N is  increased, t h e  required ve loc i ty  w i l l  a l so  drop 
(eq, (10)). Thus, for a f ixed  B, a four-loop s y s t e m  should have 1/16 the 
s t r e s s  of t h e  two-loop system i f  t h e  values of = and G are t h e  same. 

According t o  equation (32), u i s  also a very s e n s i t i v e  funct ion of u as 
shown i n  f i g u r e  16. Thus, reduced stress f o r  a given b e l t  speed can be obtained 
by desfgning f o r  values of u l e s s  than the mFnF" weight value of u as 
given by f i g u r e  7. Attendant va r i a t ions  i n  system weight (figs. 12 and 13) and 
geometry, however, w i l l  occur. In  general, f o r  a given allowable percentage in- 
crease i n  weight, t h e  margin for s t r e s s  reduction decreases as Hh increases. 
In t h i s  respect, higher b e l t  temperatures w i l l  allow a larger margin for u and 
s t r e s s  reduction without weight pena l t i e s  ( f ig .  13) but will also decrease t h e  
b e l t  ma te r i a l  strength.  
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Equation (32)  can a l s o  be used t o  provide an insight  i n t o  a des i rab le  mate- 

r i a l  f o r  t h e  revolving b e l t .  F i r s t ,  assume r remains constant desp i te  changes 
i n  bb and kb. This is  e s s e n t i a l l y  t r u e  f o r  low values of Hh, and, with a 
drum wall  res i s tance  equivalent t o  0.05-inch molybdenun, t h e  contr ibut ion of t h e  
b e l t  t o  t h e  ove ra l l  res i s tance  is  s m a l l  even f o r  high values of Hh. With t h e  
assumption of constant r ,  b e l t s  of d i f f e ren t  mater ia l s  but t h e  same weight per 
square foot pbb w i l l  have t h e  same E, u, and wt/q f o r  f ixed T and other  
design conditions. Thus from equation ( 3 2 )  (5 f o r  t h e  d i f f e ren t  mater ia ls  would 
vary as phv . From equation (10) with pbb constant and with Cb and v t h e  2 

. - cil, which makes cr - pb/cg. Thus a f igu re  of merit for a 
be expressed as 

- 
only var iables ,  V 
b e l t  mater ia l  can 

The  mater ia l  with 
a given value of 
h b ,  t h e  mater ia l  

t h e  highest  f i gu re  of merit  would have t h e  highest 
pbb. 
m t h  t h e  highest  f i gu re  of merit  would r e s u l t  i n  t h e  lowest 

aa/a for 
In  an a c t u a l  design s e t t i n g  cra/o = 1.0 and determining 

' U .  
value of %b and hence t h e  l i g h t e s t  be l t  system. 

Examination of possible  b e l t  mater ia ls  f o r  use under 1700' R, such as be- 
ryllium, Waspalloy, niobium- l-percent zirconium, s t a i n l e s s  st  eel, and molybde- 
num - TZM, reveals  beryll ium t o  be bes t  according t o  t h e  c r i t e r i o n  of equa- 
t i o n  (33) based on 10,000-hour creep rupture s t rength.  
of a t h i n  molybdenum outer  layer  on a beryllium i n t e r i o r  l aye r  produces a sub- 
s t a n t i a l l y  higher f igu re  of m e r i t  than a b e l t  of beryllium alone. 
erat ions,  however, such as thermal fatigue,  duc t i l i t y ,  bending s t r e s s ,  and s o  
forth,  w i l l  c e r t a i n l y  influence t h e  choice of b e l t  mater ia l  f o r  revolving-belt 
systems. 

A composite b e l t  composed 

Other consid- 

S t ress  determined minimum weight. - It i s  possible  t o  design a minimum 
weight system f o r  a given allowable t e n s i l e  s t r e s s  value a, if e i t h e r  drum B 
or D i s  f ixed  with b var iable .  Considering first t h e  f ixed  value of By 
subs t i t u t ing  f o r  V i n  equation (32)  from equation (10) with T1 = Te/u, and 
then  solving f o r  b with cra subs t i tu ted  f o r  cr r e s u l t  i n  

1 ClXG U 4 ( C 3  - 1) b =  
7 2 4 G  rBcbvfT4 e N 2 ( 1  - T )  In (s) (34) 

S t i l l  considering B constant and subs t i tu t ing  f o r  b i n  equation (24) give 
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Subst i tut ing wd from equation ( 2 0 )  i n t o  equation ( 2 2 ) ,  then solving f o r  B, 
and f i n a l l y  subs t i tu t ing  for B i n  equation (35) give t h e  following equation 
f o r  t h e  f ixed  value of D: 

and f o r  th i s  case 

The p a r t i a l s  with respect t o  T and u of t h e  right-hand s ides  of equa- 
t i o n s  (35) and (36) can be s e t  equal t o  zero simultaneously giving minimum 
weight values of u and T. Equation (36) w i l l  be used l a t e r  t o  obtain examples 
of revolving-belt systems. 

Contact ~~ pressure.  - For revolving-belt systems, t h e  b e l t  t ens ion  w i l l  a l s o  
produce a contact pressure on t h e  drum given by 

o r  f r o m  equations (21) and (32) 

Plots of contact pressure a r e  shown i n  f igu re  17 .  These contact pressures were 
computed f o r  t h e  same conditions as f o r  f igu re  15. Revolving-belt systems a r e  
therefore  seen t o  be inherent ly  capable of generating a contact pressure, which 
should a i d  i n  t h e  achievement of higher contact conductances. In general, how- 
ever, f o r  allowable b e l t  t e n s i l e  s t resses ,  t h e  contact pressure i s  q u i t e  low. 

Speed and Contact Time 

Figure 18(a) presents  a p lo t  of t he  b e l t  speed parameter NVB/q obtained 
from equation (10) as a funct ion of T f o r  t h e  same values of Hh and Te used 
i n  f igures  14, 15, and 17.  The speed parameter i s  governed pr imari ly  by T and 
approaches w a s  T approaches 1. A t  any value of T, t h e  g rea t e s t  va r i a t ion  
i n  NVB/q i s  about a f a c t o r  of two f o r  t h e  range of Te and Hh shown. 
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The v a r i a t i o n  of tc with T presented i n  f i g u r e  18(b)  was  obtained from 
equation (18) with Te subs t i tu ted  for Tw and r f o r  r ' .  The b e l t  contact 
time approaches zero as T approaches 1.0 and, as would be expected, i s  highly 
dependent on t h e  magnitude of t h e  combined coef f ic ien t  For t h e  values of 
Hh shown, tc v a r i e s  by more than a f a c t o r  of 10. High heat-transfer coeff i -  
c ient  systems required for l i g h t  weight will, therefore,  have very short  b e l t  
contact times. 

Hh. 

APPLICATION TO POWERPLANT 

Radiator-System Weight Based on E l e c t r i c a l  Output 

In previous presentations, radiator-system weight was expressed i n  terms of 
t h e  required waste heat re jec t ion  q. For appl icat ion t o  e l e c t r i c  powerplant 
systems, however, it i s  general ly  more convenient t o  express weight i n  terms of 
powerplant e l e c t r i c a l  output i n  kilowatts.  T h i s  sec t ion  will, therefore,  discuss 
radiator-system weight on a power output basis.  For t h e  t o t a l  - powerplant, spe- 
c i f i c  weight i n  pounds per kilowatt  w i l l  be designated by a, and the  primary 
radiator-system s p e c i f i c  weight w i l l  be designated by at. 

Powerplant cycle assumptions. - To base t h e  radiator-system weight on elec- 
t r i c  output, it i s  necessary t o  make assumptions concerning t h e  powerplant cycle. 
Figure 1 9  shows a block diagram of a Rankine vapor powerplant cycle. The assump- 
t i o n s  made about t h i s  cycle per t inent  t o  t h e  present study a r e  the  following: 

(1) All t h e  heat  enter ing t h e  turbine and not converted t o  turbine output 
Hence, the  re jec ted  heat  i s  power i s  re jec ted  by t h e  primary r a d i a t o r  system. 

where Q i s  t h e  reac tor  power i n  w a t t s .  

( 2 )  The usefu l  e l e c t r i c a l  power output i s  a constant f r a c t i o n  vR of t h e  
Carnot efficiency t i m e s  t h e  reactor  power. Thus, t h e  useful  power i s  

kw 'e 

where qR i s  t h e  product of t h e  system component e f f ic ienc ies  

Dividing equation (40a) by equation (39)  and s u b s t i t u t i n g  t h e  product of 
t h e  component e f f i c i e n c i e s  f o r  
jec ted  by t h e  rad ia tor :  

7~ give t h e  output power per un i t  of heat re- 
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The primmy radiator-system spec i f i c  weight 
t i o n  (36) o r  (24) and equation (41) r 

ar i s  then obtained from equa- 

The values f o r  t he  turb ine- in le t  temperature and t h e  component e f f i c i enc ie s  used 
i n  equation (41) a r e  those given i n  reference 1 f o r  the  so-called conventional 
system: 

Turbine-inlet temperature, Ti, OR . . . . . . . . . . . . . . . . . . . .  2310 
Turbine eff ic iency,  qT . . . . . . . . . . . . . . . . . . . . . . . . . .  0.77 
Alternator  eff ic iency,  qA . . . . . . . . . . . . . . . . . . . . . . . .  0.90 
Power-conditioning efficiency, y c  . . . . . . . . . . . . . . . . . . . .  0.97 
Net power output f ac to r ,  qF . . . . . . . . . . . . . . . . . . . . . . .  0.86 
Boi le r  loop eff ic iency,  qg . . . . . . . . . . . . . . . . . . . . . . .  0.97 

I n  t h i s  report  t he  aforementioned values a re  re fer red  t o  as t h e  "reference con- 
di t ions" ,  and they are used i n  t h e  "reference" systems. 

Ef fec t  of design variables.  - Figure 20 presents f o r  a rotating-drum system 
t h e  var ia t ion  of at with 'Pe f o r  severa l  values of Hh f o r  t h e  reference 
conditions given previously. Both t h e  range of Te f o r  low weight and t h e  
spec i f i c  value of Te a t  which a' minimizes decrease w i t h  decreasing Hh. A 
rad ia tor  f o r  which spec i f i c  weight var ied d i r e c t l y  with 
about 1800' R for t h e  same powerplant assumptions. A s h i f t  of t h e  minimum a' 
toward t h i s  temperature i s  evident f o r  high values of For t h e  inputs and 
assumptions used, it is a l so  seen tha t  r e l a t i v e l y  l o w  values of a' a r e  possi-  
b l e  if  high contact and condensing coef f ic ien ts  can be obtained. 

Te4 would minimize at 

Hh. 

The parameter ~.,b/7 is  t h e  weight of the b e l t  per square foot  of a r ea  
(one s ide )  divided by t h e  combined vfew f a c t o r  and emfssivfty of both s ides  of 
t h e  b e l t .  The b e l t  weight per square foot  of e f f ec t ive  blackbody radfat ing a rea  
i s  (1 /2) (pbbb) ,  The value of 0,1038 lb / sq  ft used f o r  this parameter on pre- 
vious f igures  corresponds t o  a beryllium b e l t  0-01-inch th i ck  with = 0.9 o r  
0.005-inch th i ck  with E = 0.45. For materfals  with dens i t i e s  near that of 
s tee l ,  t h e  thicknesses would be 0,0022 and 0.OOll inch. Figure 21 shows that 
even t r i p l i n g  this value of q,bE w i l l  still  permit s m a l l  values of a' at  
high values of Hh. The e f f ec t  of va r i a t ion  of % b E  on t h e  magnitude of a' 
is most pronounced f o r  low values of Hh and at low values of Tea There i s  
a l s o  a tendency f o r  the minimum a' t o  sh i f t  s l i g h t l y  t o  higher temperatures as 
b b / F  is  increased. 

Figure 22 shows that t h e  va r i a t ion  of a' with t h e  drum weight parameter 
P (weight of t h e  drum and i t s  accessories per sq f t  of contact a r ea )  is highly 
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dependent on t h e  value of Hh. The value of p i s  dependent on d r u m  design, 
drum s i z e  (which i s  a funct ion of both power l e v e l  and Hh), and t h e  amount of 
meteoroid shielding t h a t  i s  needed. 
vious f igures  i s  discussed i n  appendix C. Changing p from 16 t o  32 lb/sq f t  
changes at less than 0.1 pound per  kilowatt  f o r  Hh = 1,000,000 Btu/(sq f t )  
(hr)(OR). However, t h e  e f f e c t  of j3 on radtator-system weight becomes more 
pronounced as Hh i s  reduced, s ince  wd becomes a l a r g e r  f r a c t i o n  of t h e  t o t a l  
weight as Hh i s  reduced. The e f f e c t  of p i s  f a i r l y  independent of t h e  value 

The value of p = 16 lb/sq f t  used i n  pre- 

O f  Te. 

If t h e  change i n  p i s  brought about by a change i n  t h e  drum w a l l  th ick-  
ness s, t he re  i s  an addi t iona l  e f f e c t  on weight t h a t  should be considered, s ince 
a change i n  s a l so  changes t h e  thermal res i s tance  r. Variations i n  s a r e  
most not iceable  a t  Hh = 1,000,000 Btu/(sq f t ) ( h r ) ( ' R )  where r is  determined 
mainly by s. For example, doubling s f o r  Hh = 1,000,000 Btu/(sq f t ) (hr ) (OR)  
has nearly t h e  same e f f e c t  as doubling j3 i n  f i gu re  22. I n  general, t h e  e f f e c t  
of doubling s on at is  not very s ign i f i can t  a t  any value of Hh. 

Ef fec t  of powerplant cycle assumptions. - Figure 2 3  shows t h e  e f f e c t  of t h e  
powerplant cycle assumptions on t h e  rad ia tor -spec i f ic  weight a' f o r  severa l  
values of Hh. The s o l i d  curves are f o r  t h e  reference system previously d is -  
cussed i n  f igures  20 t o  22. The dashed curve shows t h e  e f f e c t  of increasing t h e  
component e f f ic ienc ies :  qy from 0.77 to 0.85, 7~ from 0.90 t o  0.95, and 7~ 
from 0.86 to 0.90. The increased component e f f i c i enc ie s  reduce the  r ad ia to r  
spec i f i c  weight a t  all turbine-exi t  temperatures but with a more pronounced ef- 
f e c t  at the lower turbine-exi t  temperatures. The temperature f o r  minimum a* 
is  s l i g h t l y  reduced. 

The dash-dot curves show the  addi t ional  e f f e c t  of increasing the  turbine- 
i n l e t  temperature from 2310° t o  2560° R. 
t h i s  curve correspond t o  t h e  advanced system of reference 1. The increase i n  
turb ine- in le t  temperature a l s o  reduces t h e  a t ,  par t i cu la r ly ,  a t  t h e  higher oper- 
a t ing  temperatures. There is  a l so  a s h i f t  of t h e  temperature f o r  minimum a' 
t o  a higher turbine-exi t  temperature. 

The e f f i c i enc ie s  and temperatures f o r  

The e f f e c t s  noted previously a r e  most pronounced at  the  lower values of 
contact conductances i n  terms of both absolute changes and percentage changes. 

Comparison of Tubular and B e l t  Radiators 

For t he  5-megawatt powerplant of reference 1 with "conventional" component 
e f f i c i enc ie s  and turb ine- in le t  temperatures, t he  f l u i d - f i l l e d  f in- tube r ad ia to r  
has an a' of 4.6 pounds per  kilowatt. Figures 20 t o  22 ind ica te  t h a t  i f  high 
contact and condensing coef f ic ien ts  can be obtained, b e l t  rad ia tor  systems with 
an ut of about 1 pound per  kilowatt  may be at ta inable .  Thus, t h e  po ten t i a l  f o r  
a considerable reduction i n  weight e x i s t s  f o r  powerplants using a b e l t  r ad ia to r  
system. However, much of t h e  weight of a f in- tube r ad ia to r  i s  armor f o r  meteor- 
o id  protection. 
puncture by meteoroids of 0.9. 
t h e  fin-tube rad ia tor ,  by a reduction i n  t h e  sever i ty  of t h e  meteoroid environ- 

The fin-tube r ad ia to r  of reference 1 has a probabi l i ty  of no 
A reduction i n  t h e  protect ion requirement f o r  
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ment f o r  example, w i l l  tend t o  reduce t h e  weight difference between t h e  two radi-  
a t o r  types. 

Incorporation of Belt  Radiator System 

i n t o  Powerplant 

Up u n t i l  now, the  discussion has considered t h e  weight var ia t ion  of t h e  
r a d i a t o r  system only. As  an i l l u s t r a t i v e  example, the  r a d i a t o r  system w i l l  now 
be incorporated i n  a powerplant, and t h e  e f f e c t  of t h e  b e l t  r a d i a t o r  system on 
t h e  powerplant weight w i l l  be invest igated over a range of turbine-exi t  tempera- 
tures.  

Powerplant s p e c i f i c  weight. - The powerplant component weights are based on 
t h e  5-megawatt Rankine cycle powerplant of reference 1, which has a f l u i d - f i l l e d  
tubular  radiator.  The component weights a r e  l i s t e d  i n  t a b l e  I and grouped ac- 
cording to how they are t r e a t e d  i n  t h e  present study. The first grouping i s  
c a l l e d  f ixed weights. I n  t h e  present example, t h e  reac tor  thermal power is  held 
constant a t  30 megawatts; correspondingly, the  weight of t h e  reac tor  and asso- 
c ia ted  components i s  held constant. Because varying Te will cause the  elec- 
t r i c a l  power output to vary, t h e  s p e c i f i c  weight of these components w i l l  a l so  
vary. The second grouping i s  ca l led  var iable  weights. These weights a r e  assumed 
t o  be d i r e c t l y  proportional to the  e l e c t r i c a l  power output; hence, although t h e i r  
a c t u a l  weight var ies ,  t h e i r  s p e c i f i c  weight i s  constant at  4.04 pounds per ki lo-  
w a t t .  The t h i r d  grouping cons is t s  of the  items t h a t  a r e  replaced by the  drum- 
b e l t  r a d i a t o r  system, t h a t  is ,  t h e  condensers and the  primary f l u i d - f i l l e d  r a d i -  
ators. The fourth group i s  composed of items t h a t  have been omitted from con- 
sideration. Much of t h e  s t r u c t u r a l  weight of t h e  f l u i d - f i l l e d  tubular  rad ia tor  
i s  required to supporL t h e  rad ia tor  during boost from the  Earth's surface. Be- 
cause the  b e l t  r a d i a t o r  can be conveniently " ro l led  up", t h e  s t r u c t u r a l  weight 
may be considerably less. A powerplant using a b e l t  f o r  t h e  primary r a d i a t o r  
m2y s t i l l  need a secondary r a d i a t o r  system. No analysis  has been made of t h e  
advantage of using a b e l t  t o  replace t h e  secondary f l u i d - f i l l e d  radiator.  The 
weight of the  secondary rad ia tor ,  however, i s  comparable t o  t h a t  of t h e  primary 
r a d i a t o r  i n  t h e  example given, and a secondary b e l t  system should y i e l d  sub- 
s t a n t i a l  savings i n  weight. 

- 
The s p e c i f i c  powerplant weight a considered i n  t h e  following discussion i s  

t h e  sum of the  s p e c i f i c  weights of t h e  reac tor  and associated components, t h e  
turboal ternators  and power conditioning equipment, and t h e  r a d i a t o r  system, 
divided by the  ne t  e l e c t r i c a l  power output. 

- 
Figure 24 shows t h e  var ia t ion  of a with Te f o r  severa l  values of Hh 

and j3 f o r  a reference and an advanced powerplant using t h e  same 30-megawatt 
thermal output reactor.  The absolute component weights a r e  assumed t h e  same f o r  
both systems. There is, however, a decrease i n  s p e c i f i c  weight i n  t h e  components 
of t h e  advanced system because of t h e  power increase caused by t h e  increase i n  
turbine- inlet  temperature and component eff ic iencies .  A complete l i s t i n g  of the 
turb ine- in le t  temperatures and component e f f i c i e n c i e s  f o r  both systems i s  given 
i n  f igure  23. of t h e  order of 1250 Btu/(sq f t ) (hr ) (OR)  or b e t t e r  can If an Hh 
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be obtained, t h e  weight of t h e  b e l t  r ad ia to r  system f o r  t h e  inputs  used becomes 
a small p a r t  of t he  t o t a l  weight a t  or above t h e  turbine-exi t  temperature t h a t  
gives minimum a f o r  both examples. Minimum powerplant spec i f i c  weight occurs 
a t  a Te of 1000° t o  1200' R; t h i s  Te i s  subs t an t i a l ly  lower than 1700° R, 
which i s  normally associated with minimum powerplant weight f o r  a d i r e c t  condens- 
i ng  r ad ia to r  with T i  = 2500' R- The lower values of Te f o r  minimum F i  f o r  
t h e  b e l t  r ad ia to r  system are a result of t h e  lower minimum f o r  t h e  radiator-  
system weight and t h e  r e l a t i v e l y  low r a t i o  of radiator-system weight to t o t a l  
powerplant weight. The effect of p on t o t a l  powerplant weight also shown i n  
t h e  f igure,  i s  similar to i t s  e f f e c t  on a' shown i n  f igu re  21. Similarly,  t h e  
effect  of 

- 

CY,' 

b b F  may be deduced from f igu re  22- 

The r e l a t i v e l y  low Te a t  which a minimizes could r a i s e  a problem i n  t h e  
For choice of a working f l u i d  i n  t h e  design of a powerplant f o r  minimum weight. 

example, a t  1250' R, turbine-exhaust vapor pressures would be about 0.012 l b /  
s q  in. f o r  sodium, 0.14 lb/sq in. f o r  potassium, 0.37 lb/sq in. f o r  rubidium, 
0.46 lb/sq in. f o r  cesium, and 7.5 lb/sq in. f o r  mercury. 
mercury has a vapor pressure of 5800 lb/sq in. ,  while t h e  others  have reasonable 
pressures. I n  addi t ion t o  t h e  pressure problems involved, considerable moisture 
content (of t h e  order  of 25 percent) would r e s u l t  i n  t h e  turbine expansion over 
t h i s  temperature range. 
problems might be considerable. I n  p rac t i ca l  designs, therefore ,  it may not be 
des i rab le  t o  design f o r  t h e  minimum weight powerplant with these  rad ia t ion  sys- 
t e m s .  An ind ica t ion  of t he  weight pena l t ies  involved i n  going t o  higher than 
minimum weight Te can be obtained from f igu re  24. 

A t  2500' R, however, 

Associated specific-volume and turbine-blade-erosion 

- 
The spec i f ic  powerplant weight a f o r  t h e  reference system with a b e l t  

r ad ia to r  f o r  
i s  7.9 pounds per kilowatt  ( f ig .  24(a)) .  The corresponding value f o r  a f lu id -  
f i l l ed  rad ia tor  based on t h e  estimations i n  reference 1 (see  table I) i s  
1 2 . 1  pounds per kilowatt. I n  this case, t h e  b e l t  r ad ia to r  o f f e r s  a 35-percent 
reduction i n  weight. Using t h e  b e l t  r ad ia to r  i n  a system with advanced com- 
ponent performances and f o r  t h e  aforementioned values of P ,  Eh, and Te r e -  
sults i n  an a of 4.9 pounds pe r  kilowatt ,  a 38-percent reduction from t h e  b e l t  
r ad ia to r  system using reference component performances. R-ecall t h a t  not a l l  of 
t h e  powerplant weights are included i n  
included i n  the  previous comparisons. 

P = 1 6  lb/sq f t ,  Hh = 1250 Btu/(sq f t ) (h r ) (OR) ,  and Te = 1500 OR 

- 
a ( see  t a b l e  I),  and hence all a r e  not 

Radiator weight and dimensions. - To obtain an ind ica t ion  of absolute values 
of radiator-system weight- and dimensions, a potassium vapor cycle with t h e  ref- 
erence conditions and a turbine-exi t  temperature corresponding t o  the  conven- 
t ion& 5-megawatt system of reference 1 w a s  assumed. Values of h = 10,000 Btu/ 
( sq  f t )  (hr )  ( O R )  and H = 1430 Btu/( sq f t )  (hr) (OR) were assumed. To obtain high 
values of .H, t h e  b e l t  i s  assumed t o  be t in-coated on t h e  s ide  contacting t h e  
drum. Therefore, with only one s i d e  of  t he  b e l t  radiat ing,  6 = 0.45, and f o r  a 
b e l t  of 0.005-inch-thick beryllium, p b b F  = 0.1038 lb/sq f t .  A p of 
1 6  lb/sq f t  i s  believed t o  allow f o r  adequate meteoroid protection. 

- 

Calculations of weight and dimensions w e r e  made according t o  equations (lo), 
G = 0.85, and t h e  minimum weight value (21), and (24), where it w a s  assumed t h a t  

of u w a s  obtained from f igu re  7. Results of t h e  ca lcu la t ions  f o r  a ro ta t ing-  
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drum system a r e  shown i n  t a b l e  II(a).  

If  it is  presumed t h a t  t h e  b e l t  can be r o l l e d  up around t h e  drum f o r  launch- 
ing and la te r  deployed i n  space, t h e  b e l t  system could be contained i n  a cylinder 
25 f e e t  long and 5 feet  i n  diameter. Thus, a r e l a t i v e l y  compact s ing le  package 
can be obtained f o r  a b e l t  r a d i a t o r  system. 

For rotating-drum systems, t h e  b e l t  dynamic s t r e s s e s  (pV2/144 g lb/sq in. ) 
are s m a l l .  The l a r g e s t  s t r e s s e s ,  which a re  developed i n  f lexing around t h e  rol- 
lers, can be controlled by proper s i z i n g  of t h e  r o l l e r s .  However, the inputs 
f o r  t h e  rotating-drum system cannot be applied to a revolving-belt system because 
t h e  t ens i l e  s t r e s s e s  would be prohibi t ively high (5,260,000 lb/sq in. ) if t h e  
b e l t  w a s  revolved about a s t a t i c  drum. 

To obtain an example of a revolving-belt system, equation (36)  ( t h e  fixed- 
drm-diameter case) w a s  used. Figure 25 presents t h e  minimum weight values of u 
and 2 as functions of t h e  design parameter 

The minimum weight value of z increases with increasing e,, but t h e  minimum 
weight value of u decreases. For t h e  example systems considered, t h e  minimum 
weight values of 7 and u were used. The assumptions and results f o r  a 
revolving-belt system a r e  presented i n  t a b l e  I I ( b ) .  

The revolving-belt system i s  27 percent heavier than t h e  rotating-drum sys- 
tem, and t h e  revolving-belt  system has a lower probabi l i ty  of no puncture by 
meteomids, 0.998 compared with 0.999. To achieve t h e  same probabi l i ty  as t h e  
rotating-drum system, t h e  weight of the  revolving-belt system would increase 
about 7 percent. 
1- times t h e  four-loop system, 

A two-loop ( N  = 2 )  revolving-belt system would weight about 
1 
2 

The following pr inc ipa l  r e s u l t s  were obtained from t h e  analysis  of heat- 
t r a n s f e r  and weight c h a r a c t e r i s t i c s  of moving-belt r a d i a t o r  systems: 

1. An eigenvalue so lu t ion  f o r  t h e  t r a n s i e n t  heat conduction between t h e  
drum and t h e  b e l t  of a moving-belt r a d i a t o r  system, which r e j e c t s  waste heat f o r  
a Rankine power cycle, has been developed. This so lu t ion  permits t h e  calcula- 
t i o n  of t h e  l o c a l  temperature var ia t ion  through t h e  drum w a l l  and b e l t  thickness 
as a function of t h e i r  thicknesses, t h e i r  thermal propert ies ,  t h e  contact con- 
ductance between them, and t h e  contact t i m e .  The average temperature through 
t h e  b e l t  thickness af ter  contact i s  a l s o  obtained, and a simple approximation to 
t h i s  i s  shown to be s u f f i c i e n t l y  accurate f o r  parametric studies. 

2. Among the many design parameters a f fec t ing  t h e  drum-belt system ( d r "  
weight per  square f o o t  of contact area, b e l t  weight per  u n i t  rad ia t ing  area, 

31 



e tc .  ), t h e  contact conductance and t h e  hea t - re jec t ion  temperature (condensing 
temperature) were shown t o  have t h e  l a rges t  e f f ec t  i n  determining t h e  weight of 
t h e  system. For example, using i l l u s t r a t i v e  system inputs  at 1700' R, t h e  spe- 
c i f i c  weight is  estimated t o  vary from 0.05 to 1 . 6  lb/(Btu/sec) f o r  contact con- 
ductances ranging from 00 t o  50 Btu/(sq ft)(hr)(OR). At 1400' R, t h e  range i s  
from 0.09 t o  2.25 lb/(Btu/sec). 
face  (e.g., t i n  or gallium) between t h e  drum and t h e  b e l t  t o  obtain t h e  high 
conductances needed f o r  low system weight. 

It may be necessary to use a l iquid-metal  i n t e r -  

3. High condensing hea t - t ransfer  coe f f i c i en t s  on t h e  inner  drum wall i n  ad- 
d i t i o n  t o  high values of contact conductance a r e  a l s o  important f o r  o'btaining 
low spec i f i c  weight. 

4. The va r i a t ion  of t h e  drum-belt-system spec i f i c  weight with heat-  
r e j ec t ion  temperature Te, f o r  t h e  inputs considered, was approximately propor- 
t i o n a l  t o  Te -3.3 and Tg2 f o r  contact conductances of a, and 125 Btu/ 
(sq f t  ) (hr ) (OR) ,  respect ively.  

5. The r a t i o  of drum weight t o  b e l t  weight f o r  a weight minimized system 
decreases as contact conductance increases, but this r a t i o  increases as t h e  heat-  
r e j ec t ion  temperature increases .  

6. For t h e  inputs  considered, var ia t ion  of t h e  r a t i o  of b e l t  ou t l e t  tem- 
perature  t o  b e l t  i n l e t  temperature from 0.69 t o  t h e  physical ly  impossible value 
of 1 .0  ( i n f i n i t e  b e l t  speed) had l i t t l e  e f f ec t  on t h e  weight of t h e  system, a l -  
though t h e  required b e l t  speed w a s  g r e a t l y  affected.  

7. A revolving-belt system, espec ia l ly  for cases of high contact conduct- 
ance, may require  a much l a r g e r  d m  than i s  necessary f o r  hea t - t ransfer  con- 
s idera t ions  or a th i cke r  b e l t  than t h a t  necessary f o r  a nonrevolving system t o  
keep t h e  b e l t  t e n s i l e  s t r e s s e s  developed within allowable limits. In  general, 
it may not be possible  t o  design for minimum system weight based on hea t - t ransfer  
requirements with a revolving b e l t .  For a rotating-drum system, t h e  drum can be 
more r ead i ly  s ized t o  give m i n i m u m  system weight. 

8. I l l u s t r a t i v e  ca lcu la t ions  of Rankine cycle powerplant systems a t  about 
5-megawatts power showed t h a t  t h e  spec i f i c  weight of a be l t - r ad ia to r  powerplant 
minimizes a t  a lower turb ine-exi t  temperature than t h a t  o f  a f in- tube r ad ia to r  
powerplant f o r  t he  same turb ine- in le t  temperature. This minimum i s  qu i t e  f l a t  
over a wide range o f  tu rb ine-exi t  temperatures f o r  high values of contact con- 
duct an c e. 

9. The weight of a be l t - r ad ia to r  system i s  estimated t o  be considerably 
less than t h e  weight of a comparable f in- tube radia.tor. A t o t a l  spec i f i c  weight 
f o r  a b e l t  r ad ia to r  system of less than 1 pound per  kilowatt  may be possible  f o r  
a Rankine cycle with a tu rb ine - in l e t  temperature of 2500' R i f  contact conduct- 
ances of severa l  thousand Btu/(sq f t ) ( h r ) ( O R )  or b e t t e r  can be obtained. 
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CONCLUSIONS 

Because t h e  b e l t  r ad ia to r  o f f e r s  promise of subs t an t i a l  weight savings over 
a tubular  r ad ia to r  (due t o  i t s  reduced s u s c e p t i b i l i t y  t o  damage) and a l s o  o f f e r s  
a compact launch package, it appears t o  have a s ign i f i can t  advantage for l a rge  
e l e c t r i c a l l y  powered space-propulsion systems. However, i t s  mechanical com- 
p l ex i ty  and unique heat - t ransf  er cha rac t e r i s t i c s  require  more ana ly t i ca l  and 
experimental work plus  de t a i l ed  design s tudies  before i t s  t r u e  po ten t i a l  can be 
established. 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, Ju ly  5, 1963 
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APPENDIX A 

CONDUCTIVE HEAT-TFLANSFER ANALYSIS AND ORTHOGONALITY PROOF 

Conductive Heat -Transfer Analysis 

The equation for one-dimensional t r a n s i e n t  conductive heat t r a n s f e r  i s  

where y2 = k/pc. 
such equations, one f o r  the  drum w a l l  and one f o r  t he  b e l t .  

and/or Ke- 12& cos hx plus some constant. 
solut ion for t h e  drum i s  of t h e  form 

The problem at hand i s  r e a l l y  a simultaneous so lu t ion  of two 
A so lu t ion  of t he  

aforementioned p a r t i a l  d i f f e r e n t i a l  equation (a) i s  T = Ce -12r2t sin 

Thus, it w i l l  be assumed t h a t  t h e  

-A2& 
T = T~ - e d d (c" s i n  lax + K* cos hdx) f o r  0 - -  < x  < s (ma ) 

while that for t h e  b e l t  i s  of a similar form 

The coordinate systems a r e  shown i n  sketch ( e ) .  

X '  OT 

0 t 
X 

These coordinate systems are f ixed  r e l a t i v e  t o  t h e  drum and r o t a t e  with it. 
Boundary condition 1, which is  aT/& = 0 at x = 0, implies K = 0. Boundary 
condition 2, which is aT/ax' = 0 at x' = 0, implies E = 0. 

* 
* 

Subtracting T2 from both s ides  of equations ( A 2 a )  and (A2b),  subs t i tu t ing  
S - x = X I ,  and rearranging t h e  equations give 
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2 2  
f o r  0 < x < s- 

T - TZ -Adrat 
= 1 - e  C s i n  hdx - -  

Tw - T2 
2 2  T - T2 

= 1 - e  -hbYbt F COS h b ( S  - X )  f o r  s+ < - -  x < s (A3b) 
Tw - T2 

where 

n* 

and 

From t h e  cont inui ty  of t h e  heat flow across t h e  drum-belt contact, 

Subst i tut ing t h e  der iva t ives  of equations (A3)  i n t o  equation (A4) gives 

Since equation (A5) must hold f o r  any value of t, then 

Theref or e, 

kdhd cos Ads E =  
c s i n  %(s - S )  

or using equation (A6)  r e s u l t s  i n  

(A7 ) 

@L If t h e  conductance across t h e  contact i s  H, then  H AT' = k 
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or 

Subst i tut ing from equations (A3) i n t o  (A8) using (A6) gives 

= - kdhd cos has F rd c C r b  
H s i n  Ads - - cos hd - (S - 

which reduces to 

t a n  z - LU cot 0z = - cpz 

by means of equation (A7 ) and t h e  fo l lowing  i d e n t i t i e s  : 

Sketch ( f )  is a graphical  so lu t ion  to equation ( A l O ) .  

N 
4 

N 

I 

N 
m 
-P 
0 
0 

3 
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Each Ad and corresponding Ab gives a par t icu lar  simultaneous solution 
t o  t h e  p a r t i a l  d i f f e r e n t i a l  equations. 
lar solutions gives t h e  solut ion t o  t h e  problem at  hand. 
i s  determined by t h e  coeff ic ients  F1, F2, Fg, . . . and C1, C2, C3, . . . . 
These coeff ic ients  can be determined from t h e  i n i t i a l  temperature d is t r ibu t ion  
through t h e  drum w a l l  and b e l t  thickness i f  t h e  par t icu lar  solutions a re  orthog- 
onal e i the r  with or without some weighting function over t h e  in t e rva l  covered by 
t h e  solut ion (0 < - -  x < S ) .  

The proper combination of these particu- 
The proper combination 

Only when 0 = 1 and cp = 0 a r e . t h e  A ’ s  uniformly spaced and will they  
lead t o  a Fourier ser ies ;  cp = 0 if  and only if H = 00 and 0 = 1 if  and only 
i f  rb/rd = (s/s) - 1. For any case, ,however, t h e  A ’ S  lead t o  a s e t  of func- 
t i o n s  that a re  orthogonal with respect t o  a weighting function over t h e  in t e rva l  
0 < x < S. It will be shown i n  t h e  sect ion Orthogonality Proof t h a t  - -  

s i n  (Ad) x s i n  (Ad) x dx 
n m 

S 

(All) 
Y d  ‘d 

‘n ‘m n ‘b n ‘b 
+ p q  cos ( A d )  - (s - x) cos ( A d )  - ( s  - x) dx = 0 

f o r  n f- m and 

The r a t i o  F / C  i s  known from equation (A7) .  

If t h e  i n i t i a l  temperature d is t r ibu t ion  i s  known, t h e  coeff ic ients  Fn and 
Cn 
indicating t h e  summation give 

can be determined i n  t h e  following manner: Rearranging equations ( A 3 )  and 

- ( A  )2y2t 
C, s i n  (Ad)  x 

n 

Tw - T 

Tw - T2 
n=l 

f o r  o < x < s- ( ~ 1 2 a )  - -  

f o r  s+ < x < s 

n=l 

. .  



- .- . -. . .. . . . . . . .. . . -. . . - . . .. .. . ... .. . . . .. . .. .. . .. - . . .. . . . . . __ _ _ _  . .. . _. . . - - .- . . . . . . - . - . . . .. . . - - - . 

Tw - T 
Letting t = 0 with = T(x,O), then multiplying both s ides  of 

Tw - T2 
equation (Al2a) by s i n  (ha) x dx and in tegra t ing  from 0 t o  s, multiplying 

both s ides  of equation (Al2b) by P - cos (Ab),(S - x) dx and integrat ing from 

s t o  S, and finally add% t h e  two resu l t ing  equations yield 

m 
Fm 
Cm 

n=l  
1 

( a 3 )  P - 'm cos (h) (s - x)  dx 
c;m m 

Making use of equation (AU) gives 

T(x,O) s i n  (Ad) x dx + P- T(X,O)  C O S  (Ab) (S - X )  dX 
n n 

Performing t h e  integrat ion on t h e  right,  subs t i tu t ing  (Fn/Cn) = An and 
A C = Fn, and rearranging r e su l t  i n  n n  
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or  

In most cases t h e  temperatures of i n t e r e s t  a r e  for times when on ly  the first 
term of t h e  series i s  s igni f icant .  Also, t h e  higher t h e  contact res i s tance  is, 
t h e  lower H i s  and t h e  more ins igni f icant  t h e  other  terms become. The average 
b e l t  temperature across i t s  thickness T, can be determined from 

dx 

01% hogonalit y Proof 

For t h e  proof of t h e  orthogonality of the  eigenfunctions of t h e  heat- 
t r a n s f e r  solut ion over t h e  i n t e r v a l  x = 0 t o  x = s, t h e  following notat ion 
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w i l l  be used: 

f o r  0 < x < s- q ( n )  = f(n) cn sin (Ad) x - -  n 

f o r  s+ < x < s ( U 8  1 - -  q ( n )  = f ( n )  E Fn cos (Ab) (S - x) n 

The eigenfunctions are orthogonal with respect  t o  a weighting function p (x )  i f  

for m # n (Sturm-Liouville problem) 

It will be shown that 

f o r  0 < x < s-  P(X> = 1 L -  

and 

i s  a s a t i s f a c t o r y  weighting function. From (Al8) it i s  obvious t h a t  

and 

Multiplying ( S O )  by $(m)p(x) aX, (A21) by $(n)p(x) dx, then subtract ing one 
from t h e  other, and f i n a l l y  in tegra t ing  give 

By using equations (AM), (Al9), and (A6) ,  equation (A22) becmes 
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= [  (Ad) n 2 - (Ad)l[ m f ( n > f b >  e+? G[ f (n>f (m)  e] (A23) 

Working with t h e  first term of t h e  first i n t e g r a l  on t h e  l e f t  of equation (A23) 
and making use of su dv = uv - sv du twice in succession give 

As a result, t h e  l e f t  s ide  of equation ( A 2 3 )  becomes 

Since f =  0 at x = 0 and (&/ax) = 0 at x = S (boundary conditions 1 
and 2 ) ,  t h e  l e f t  s ide  of ( A 2 3 )  becomes 

From equations (A3)  

The l e f t  s ide  of (A23) i s  then 

From equation (A9)  at x = s 
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With this  s u b s t i t u t i o n  f o r  f the left-hand side of equation (A23) becomes zero. 
Since on t h e  right-hand side of equation (A23) 

then  

where 

Subst i tut ing f o r  f and f from equation (Al.8) and dividing by CnCm r e s u l t  i n  
equation (~ll). 
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APPENDIX B 

EFFECT OF CYCLING 

For t h e  calculat ions of f igu res  4 and 5, t h e  i n i t i a l  temperature d i s t r ibu -  
t i o n  assumed f o r  t h e  drum w a l l  was  a uniform value of 
T h i s  i s  always a good assumption for t h e  first cycle. If t h e  contact time i s  
shor t  (e.g., t h e  curve f o r  t, = 0.02 sec 
v a l i d  f o r  later cycles,  I n  th i s  appendix t h e  e f f ec t  of cycling on t h e  b e l t  
average temperature a f t e r  contact T1 is discussed. 

T, across  i t s  thickness.  

i n  f i g .  4), the assumption may not be 

Cycling r e s u l t s  i n  a change of t h e  i n i t i a l  drum wall temperature d i s t r ibu -  
t ion ,  which a f f e c t s  t h e  average value of t h e  b e l t  temperature a f t e r  contact. 
The  most r igorous method of determining t h e  e f f ec t  of cycling would be i t e r a t i o n  
of t h e  s e r i e s  solut ion f o r  a given contact time. A constant temperature through 
t h e  drum w a l l  can be assumed, and a f irst  value of t h e  b e l t  high-temperature 
parameter (T1 - T ) / (Tw - T 2 )  and t h e  l o c a l  temperature parameter 
(T - T z ) / ( T w  - T2T could be calculated.  For t h e  second calculat ion,  T(x,O) of 
t h e  drum wall i s  taken as  t h e  values obtained a t  t h e  end of t h e  first cycle. 
(The i n i t i a l  b e l t  assumption of a uniform temperature through i ts  thickness i s  
s t i l l  v a l i d . )  
( T l  - T2)/(Tw - T2) reaches an asymptote when p lo t t ed  a s  a function of t h e  num- 
ber  of  cycles. 

The process can be repeated u n t i l  t h e  decreasing value of 

The Sethod described i n  t h e  preceding paragraph i s  r a the r  involved; however, 
it i s  possible  t o  obtain some l imi t ing  values without i t e r a t i n g  by using, for 
t h e  i n i t i a l  drum wall temperature var ia t ion  
cycl ing a t  a contact time approaching zero with zero t i m e  between contacts .  
(For these cases, (TI - T2)/(Tw - T z )  a l s o  approaches zero . )  
case of H = 03, the  temperature p r o f i l e  i n  the drum wa l l  would approach a 
s t r a i g h t  l i n e  constant i n  time, as shown i n  sketch ( g )  where 
T(x,O) = 1 - ( T  - T2)/(Tw - T 2 ) .  If 

T(x,O), t h a t  va r i a t ion  obtained by 

For t he  i l l u s t r a t i v e  

tc > 0, t h e  drum w a l l  temperatures would be 

1.0 

0 S s 

X 
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higher at t h e  end of a contact period than t h a t  given by t h e  var ia t ion  i n  
sketch ( g ) .  
produces a lower value of (T1 - T2) / (Tw - T2) than  t h e  t r u e  value. 
example where 
approaches t h e  value shown i n  sketch ( h )  f o r  cycled contact time approaching 
zero. In t h i s  example, only one-third of t h e  AT drop occurs i n  t h e  drum w a l l  
( the  conductance of t h e  drum w a l l  for t h e  assumed thickness of 0.05-in. - thick 
molybdenum i s  about 20,000 Btu/ (sq f t  ) (hr) (OR) ) . 

Thus, using t h e  T(x,O) obtained from a cycle time approaching zero 

H = 10,000 Btu/(sq f t > ( h r ) ( O R ) ,  t h e  drum temperature d i s t r i b u t i o n  
In  another 

K 

Prom t h e  r e s u l t s  of these  and s imilar  cases, l imi t ing  values of 
(T1 - T2) / (Tw - T2) f o r  several  values of 
ure  26. The upper l i m i t  of each shaded area was  obtained by assuming t h e  i n i t i a l  
temperature d i s t r i b u t i o n  t o  be constant a t  Tw throughout t h e  drum w a l l .  The 
lower l i m i t  l i n e  was obtained by assuming f o r  T(x,O) t h e  temperature v a r i a t i o n  
obtained by cycling t h e  b e l t  a t  t, + 0 as indicated i n  t h e  two aforementioned 
examples. 
any t, would f a l l  i n  t h e  corresponding shaded area. I n  t h e  region of low 
values of (T1 - T2)/(Tw - Tz) ,  t h e  i t e r a t i v e  value would be near t h e  bottom of 
t h e  shaded area. 
t i v e  value would be near t h e  t o p  of t h e  shaded area. The spread i n  
(T1 - T2)/(Tw - T2)  i s  seen t o  increase as H increases. However, since, i n  
general, t h e  spread i s  not la rge  and f o r  belt-radiation-system operation 
(T1 - T2)/(Tw - T2) i s  high, t h e  e f fec t  of cycling on t h e  drum t o  b e l t  heat 

H were computed and p lo t ted  i n  f i g -  

An i t e r a t i o n  f o r  (T1 - T 2 ) / ( T w  - T 2 )  at a p a r t i c u l a r  value of H f o r  

In t h e  region of high values of (T1 - 'P2)/(Tw - T2)  t h e  i t e r a -  

ransfer  i s  not considered very s igni f icant .  
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DRUM WEIGHT ESTDLATE 

D r u m  outer  cylinder 
Inner cylinder 
Separators and s t i f f en ing  members 
D r u m  end 
Rollers  460 
Bearings and dr ive  mechanism 150 
In t e rna l  piping 100 
Meteoroid sh ie ld  9 10 

Tot a1 2350 
1 

In  t h i s  appendix an estimate of drum weight i s  obtained by considering an 
i l l u s t r a t i v e  s t ruc tu re  composed of a four-loop s t a t iona ry  drum (revolving b e l t )  
20 f e e t  long and 3 f e e t  i n  diameter. A sketch of t h e  drum cross sec t ion  i s  
shown i n  f igu re  27. The drum i s  assumed t o  be composed of an inner  and an outer 
cyl inder  with separators  (which a l so  serve as support s t ruc tu res )  t o  provide f o r  
longi tudinal  flow channels. All par t s  of t h e  bas ic  d.rum were assumed t o  be mo- 
lybdenum. The outer  cyl inder  was 36 inches i n  diameter and 0.05 inch th ick .  
The inner cyl inder  was 34 inches i n  diameter and 0.02 inch th ick .  The separators 
a r e  0.05 inch t h i c k  and spaced 4 inches apart .  This geometry may requi re  t h e  
introduct ion of vapor at severa l  pos i t ions  along t h e  len&h of t h e  drum. The 
turb ine  housing i s  assumed t o  form one end of t h e  drum. The drum w i l l  not need 
t o  support any compressive loads i f  t h e  turbine-exhaust pressure is  higher than 
t h e  b e l t  contact pressure and if t h e  e n t i r e  drum i s  pressurized by t h e  exhaust. 
Annular passages could a l so  be used for condensation with presumably no d i f f e r -  
ence i n  weight. 

To determine t h e  weight of t h e  meteoroid shield,  t h e  probabi l i ty  of no punc- 
t u r e  through t h e  sh i e ld  i n  500 days was assumed t o  be 0.999. The calculat ions 
were based on reference 12 .  Beryllium was used f o r  sh ie ld  material ,  s ince it 
gives  the  l i g h t e s t  weight a t  t he  assumed sh ie ld  temperature of  1000° R ( r e f .  13).  
The sh ie ld  a l s o  provided t h e  support s t ruc tu re  f o r  t h e  r o l l e r s .  
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TABLE I. - EIGHT BREAKDOWN O F  RANKINE CYCLE POWERPLAXC 

WITH FLUID-FILLED RADIATORS 

[E lec t r i c  output, 5 Mw; t o t a l  reac tor  thermal power, 
30 Mw; tu rb ine- in le t  temperature, 2310' R; turbine-  
ex i t  temperature, 1610° R; tu rb ine  efficiency, 0.77; 
a l t e r n a t o r  efficiency, 0.90; net power output fac-  
t o r ,  0.85.1 

Group 

Fixed weights 

Variable weights 

Weights replaced by 
drum-belt system 

Weights not con- 
s idered I 

Component 

Reactor 
Shield 
Boilers 
Primary loop 

and pumps 
Star tup loops 

Turboalt ernat ors  
Power conditioning 

Condensers 
Primary rad ia tors  

Subt o t  a1 

St ruc ture  
Secondary radia- 

Secondary piping 
Miscellaneous and 

c ont ing enc i e s 

t o r  

Tot a1 

- ~ 

Component 
weight , 

l b  

3,000 
1,500 
6,500 
5,400 

1,400 

7,500 
12,700 

Group 
weight , 

l b  

17,800 
~ 

~~ 

20,200 

7,700 
15,000 

22,700 

17,000 
13,500 

1,800 
7,000 

Spec if  i c  
weight, 

lb/kw 

4.04 

60,700 12.1 

39,300 100,000 20 
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T-KBE 11. - EXAMPLES OF 5-MEGAWATT POWERPLANT SYSTEMS 

(a) Rotating drum 
~ 

Assumed inputs  

PbbE, lb/sq f t  
D r u m  weight parameter, p,  lb/sq f t  
Bel t  thickness,  b, in. 
Drum w a l l  thickness,  s, in.  
D r u m  length,  B, f t  
Number of b e l t  loops, N 
B e l t  cycle. temperature r a t i o ,  't 

Results 

Belt weight, wt,, l b  
Drum weight, wd, l b  
Radiator-system weight, l b  
Radiator spec i f i c  weight, a ' ,  lb/kw 
Drum diameter, D, f t  
Length of b e l t  i n  one loop, L/N, f t  
Belt speed, V, f t / s ec  
1 (minimum weight value) 
>ontact  t i m e ,  tc, sec  

(b )  Revolving b e l t  

Assumed inputs  

D r u m  weight parameter, p, lb/sq f t  
D r u m  diameter, D, f t  
Number of b e l t  loops, N 
Allowable t e n s i l e  s t r e s s ,  O a ,  lb /sq in. 
E 
G 

- 

Gs 
~~ Results 

D r u m  weight, wd, l b  
Bel t  weight, %, l b  
Radiator-system weight, l b  
Radiator s p e c i f i c  weight, a ' ,  lb/kw 
D r u m  length,  B, f t  
u (minimum weight value) 
Bel t  cycle temperature r a t i o ,  't 

Belt  thickness,  by  in. 
Length of b e l t  i n  one loop, L/N, f t  
Bel t  speed, V, f t / s e c  

0.1038 
16 

0.005 (beryllium) 
0.05 ( molybdenum ) 

20 
2 

0.69 

1620 
2270 
3890 
0.78 
2.26 

54.5 
1.21 

0.0652 

865 

16 
2.26 

4 
5000 
0.45 
0.85 
0.24 

3990 
105 7 
5047 
1.01 
41.4 
1.075 
Ow 720 

0.00576 

11.25 
118.5 
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H e a t  
radiated 
t o  space 

Heat Coolant 
source exchanger 
Heat 

Flow Moving 
b e l t  

Figure I. - Basic concept of moving-belt-radiator system. 



,-Meteoroid 

B e l t  

Rotating drum 
f i l l e d  with 

Enlarged view 
of touching 
surfaces 

( a )  Rotat ing-drm system. 

Figure 2. - Mechanisms of heat  t r a n s f e r  for moving- 
b e l t  radiators .  
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(b )  Stationary drum with revolvi-ng b e l t  ( r e f .  5 ) .  

Met e o r  o i d  
shield 

( e )  Stationary drum with revolving b e l t  (a l te rna te  method). 

Figure 2. - Continued. Mechanisms of heat t ransfer  for moving-belt radiators .  
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Condensate 

Moving 
belt 

(a) Direct condensation. 

r Meteoroid shield 
/ 

(e) Radiation. 

Figure 2. - Concluded. Mechanisms of heat 
transfer for moving-belt radiators. 
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I 

L/2 ( b )  Two-loop system, which 
c a n  rad ia te  from one s i d e  

( a )  Two-loop system w i t h  
p o s s i b l e  r a d i a t l o n  from 
both s i d e s .  

- 
I 

( e )  Four- loop  system, which c a n  r a d i a t e  
c f rom one s i d e  o n l y .  

F i g u r e  3. - B e l t  c o n f i g u r a t i o n s  for system a n a l y z e d .  
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Distance from inside of drum wall, in.  

Figure 4. - Time h i s to ry  of temperature through drum w a l l  and b e l t  thick- 
ness. 
inch-thick molybdenum; be l t ,  0.01-inch-thick beryllium. 

Contact conductance, 10,000 Btu/( sq ft) ( h r )  (OR); drum w a l l ,  0.05- 
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~- 

Contact time, 

Figure 5. - Belt high-temperature parameter as a function of contact time. 
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solution 

.12 .16 .20 .24 
Contact time, tc, see 

Figure 6. - Comparison of approximate solution with series solution of belt 
high temperature. Drum wall, 0.05-inch-thick molybdenum; belt, 0. Ol-inch- 
thick beryllium. 
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Figure 7. - Value of u - 1 that gives minimum total weight as a function of C 3 pbb/6r!3v~T~ fo r  constant belt cycle temperature r a t i o s .  
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Belt cycle 
temperature 
ratio , 

~ I- = T ~ / T ~  
~ 0.69 

s 
\ 
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LU Contact conductance 

H, 
Btu/(sq ft)(hr)(OR) \ \‘ 

1800 2000 
Turbine-exit temperature , Te, OR 

Fibwe 8. - Variation of drum plus belt weight per heat-rejection rate with 
turbine-exit temperature for several contact conductances and belt cycle 
temperature ratios. 
lb/sq ft; condensation heat-transfer coefficient, 1,000,000 Btu/ 
(sq ft)(hr)(OR); Qb, 18,400 Btu/(sq ft)(hr)(OR); u (minimum weight 
value). 

Drum weight parameter, 16 lb/sq ft; pbb/T, 0.1038 
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Figure 9. - Variation of radiator-system weight with 
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c onduc tanc e, 
Contact 

Bt 

/ 

/ 

125 
L 

-2 5C 
/ I 
/ 

/ 

600 800 1000 1200 1400 1600 
Turbine-exit temperature, Te, OR 

1800 2000 

Figure 10. - Relative weight of d r u m  and belt in a weight minimized 
system. Drum weight parameter, 16 lb/sq ft; pbb/y, 0.1038 lb/sq ft; 
condensation heat-transfer coefficient, 1,000,000 Btu/( sq ft) (hr) ( O R ) ;  

Kdb, 18,400 Btu/(sq ft) (hr) (OR) j belt cycle temperature ratio, 0.69; 
u (minimum weight value). 
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Figure U. - Effect of condensing heat-transfer coefficient on drum plus belt 
specific weight. Drum weight parameter, 16 lb/sq ft; P,,b/k, 0,1038.Ib/sq ftj 
Qb, 18,400 Btu/(sq ft)(hr)(%); belt cycle temperature ratio, 0.69; u (mini- 
mum weight value). 
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Figure 13- - Variation of drum plus belt weight per heat-rejection rate with 
u for various turbine-exit temperatures. Drum-weight parameter, 16 lb/sq ft; 
&b/k, 0.1038 lb/sq ft; Kab, 18,400 Btu/(sq ft)(hr)(OR); belt cycle temper- 
ature ratio, 0.9; Hhy 1250 Btu/(sq ft)(hr)(%). 
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Figure 14. - Dependence between belt-system geometry and speed. Drum 
, 0.1038 lb/sq ftj belt, 0.01-inch- 

thick beryllium; Qb, 18,400 ft)(hr)(%); belt cycle tempera- 
weight parameter, 16 lb/sq ft; 

ture ratio, 0.69; u (minimum weight va1ue)j number of belt loops,  2. 
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Figure 15. - Variation of b e l t  s t r e s s  for stat ionary drum with re-  
volving be l t .  Drum weight parameter, 1 6  lb/sq f t ;  h b h ,  0.2076 
lb/sq f t ;  b e l t ,  0.01-inch-thick beryllium; Kdb, 18,400 
Btu/( sq f t )  ( h r )  (%); b e l t  cycle temperature r a t io ,  0.69; u (mini- 
mum weight value); number of b e l t  loops, 2. 
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Figure 17. - Variation of contact pressure f o r  stationary drum with re- 
volving be l t .  Drum weight parameter, 1 6  lb/sq f t ;  P,,b/%, 0.2076 
lb/sq f t ;  be l t ,  0.01-inch-thick beryllium; Kdb, 18,400 
Btu/( sq f t )  ( h r )  (9); b e l t  cycle temperature r a t io ,  0.69; u (mini” 
weight value); number of b e l t  loops, 2 .  



. 8 r  I I I I r 

1000 \ 

\ 
\ 

\ 

1750 \ 
\ \ 

\ 

\*  

1000 
\ 

1 1  

\ 

‘\ \ 

-,\ 

‘t .,, 
\ 

\ 

.6 

.4 

.2 

0 
.6 

(a )  Speed parameter.  

.7 .8 . 9  1.0 
B e l t  cyc le  temperature  r a t i o ,  T 

( b )  Contact t ime. 

F igu re  18. - V a r i a t i o n  of b e l t  speed and c o n t a c t  
t ime with b e l t  cyc le  temperature  r a t i o .  
weight parameter,  1 6  l b / s q  f t ;  %b/?, 0.1038 
l b / s q  f t ;  b e l t ,  0 .01-inch-thick beryl l ium; Kdb, 
18,400 Btu./( sq f t )  (hr) ( O R ) .  

Drum 

68 



Reactor 

Secondary 
radia . tor  and 
condenser 

Figure 19. - Block diagram of Rankine vapor powerplant cycle. 
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Figure 20. - Radiator specif ic  weight as a function of Hh and turbine-exit  tempera- 
ture. 
Btu/( sq f t )  ( h r )  ( O R )  ; b e l t  cycle temperature r a t i o ,  0.69; u (minimum weight value) ; 
turbine- inlet  temperature, 2310' R; QCQPQT~A, 0.578; q ~ ,  0.77. 

Drum weight parameter, 1 6  lb/sq f t ;  pbb/E, 0.1038 lb/sq f t ;  Q b ,  18,400 

70 



\ 

\ 

\ \ 

\ 

\ 

--- \ 

\ 
\ 

- -.. 
500 

\ 
\ 

\ 

\ \ 
\ 
\ 

\ 
\ 

\ 

\ 
\, 

\ 
\ 

\ 
\ 

\ 

750 

\ \ 

\ 
\ 

'\ 

\ 
\ 
\ 
\ 

\ 
\ 
'\ 

\ 

0.1038 
-2076 --- 

I_ 1 

1000 1250 

- -- - 
~ 

1: '0 10 2250 Turbine-exit temperature, Te, C 

- Figure 21. - Variation of radiator specific weight with E for various values of 
Hh. Drum weight parameter, 16 lb/sq ft; Qb, 18,400 Bt$:/g ft)(hr)(OR); belt cycle 
temperature ratio, 0.69; u (minimum weight value); turbine-inlet temperature, 
2310' R; ~ F ~ c ~ A T Q ,  0.578; q ~ ,  0.77. 

7 1  



16 

14 

12 

10 

8 

6 

4 

2 

0 
500 750 

Drum weight 
parameter, - 

P t  
lb/sq ft 

-&- 
-I_ 

+ 
1000 1250 1500 1750 

Turbine-exit temperature, Te, OR 

Bti 

/ 

/' 

/ 

-- - 
. -  

I 
I 

/ I  

/ 

-)1,000, ooc 
I 

2000 2250 

Figure 22. - Variation of radiator specific weight with d r u m  weight parameter for 
various values of Hh. 
belt cycle temperature ratio, 0.69; u (minimum weight value); turbine-inlet tempera- 
ture, 2310' R; ~ F ~ c ' V A ~ T ~  0.578; q ~ ,  0.77. 

pbb/y, 0.1038 lb/sq ft; Kdb, 18,400 Btu/(sq ft)(hr)('R); 

7 2  



4 

I I  
I 

(Reference) 

I 
rstem 
I1 

2310 
0.85 
0.95 
0.97 
0.90 
0.97 
_ _ _ _  

I I ~~ 

~ 

I11 
( Advanced 

2560 
0.85 
0.95 
0.97 
0.90 
0.97 
0.685 

~ 

~ 

I I  

2310 
0.77 
0.90 
0.97 
0.86 
0.96 
0.555 

Turbine-inlet temperature, Ti, OR 
Turbine efficiency, VT 
Alternator efficiency, l l ~  
Power-conditioning efficiency, 
Net power ratio, 
Boiler loop efficiency, Vln 

QC 
?F 

JPro  Ict of component efficiencies, qR 

I (Reference system) 
I1 
I11 (Advanced system) 

__- - 

~ 

50 

/ 
/ 

/ 

/’ 

/ -- 

.: 
\ 

t 
\ 

h 

3 

A 

-- 
-- 

251 

.1,0( - 
0 

Turbine-exit temperature, Te, OR 

Figure 23. - Variation of radiator specific weight with component 
efficiency and turbine-inlet temperature for various values of Hh. 

18,400 Btu/(sq ft)(hr)(OR); belt cycle temperature ratio, 0.69; 
u (minimum weight value). 

pbb/c, 0.1038 lb/Sq ft; drum weight parameter, i6 lb/sq ft; Kdb, 

7 3  



20 

18 

16 

14 

8 

6 

500 75 

Drum weight 
parameter, - 

P, 
lb/sq ft 

16 - 
32 

/ 
,/ 

/ 

/ 
, /  

/ $ 
I 4  I i T 

tlternators and power conditioning 

1000 1250 1500 1750 2000 
I -  I 

Hh , 
Btu/(sq ft) (hr) ('1 

),OO 

2: 
Turbine-exit temperature, Te, OR 

(a) Reference system; electrical output, 5 megawatts; q ~ ,  0.555; turbine-inlet tem- 
perature, 2310' R. 

Figure 24. - Variation Of total powerplant specific weight with Hh and turbine-exit 
temperature for conventional and advanced systems. 
18,400 Btu/(sq ft)(hr) ( O R ) ;  belt cycle temperature ratio, 0.69; u (minimum weight 
value). 
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(a)  Mini" weight value of u - 1. 

Figure 25. - Minimum weight values of T and u - 1 f o r  revolving-belt radiators  as a function of design param- 
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Figure 26. - Effect of cycling on belt temperature. Belt, 0.01-inch-thick 
beryllium; drum wall, 0.05-inch-thick molybdenum. 



Figure 27. - Cross section of drum configuration for 
' weight estimation. 
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